• About us
    • Our USP
    • Our Services
    • Our Profiles
      • Experts
      • Analysts
      • Talent Consolidation Program (TCP)
      • Talent Accelerator Program (TAP)
    • Background & Values
  • Expertise
  • Team
  • Publications
    • Detra Notes
    • FAQctuary
  • Learning
  • News
  • Contact us
    • Connect with us
    • Work with us
    • About us
      • Our USP
      • Our Services
      • Our Profiles
        • Experts
        • Analysts
        • Talent Consolidation Program (TCP)
        • Talent Accelerator Program (TAP)
      • Background & Values
    • Expertise
    • Team
    • Publications
      • Detra Notes
      • FAQctuary
    • Learning
    • News
    • Contact us
      • Connect with us
      • Work with us
      • About us
        • Our USP
        • Our Services
        • Our Profiles
          • Experts
          • Analysts
          • Talent Consolidation Program (TCP)
          • Talent Accelerator Program (TAP)
        • Background & Values
      • Expertise
      • Team
      • Publications
        • Detra Notes
        • FAQctuary
      • Learning
      • News
      • Contact us
        • Connect with us
        • Work with us
        • About us
          • Our USP
          • Our Services
          • Our Profiles
            • Experts
            • Analysts
            • Talent Consolidation Program (TCP)
            • Talent Accelerator Program (TAP)
          • Background & Values
        • Expertise
        • Team
        • Publications
          • Detra Notes
          • FAQctuary
        • Learning
        • News
        • Contact us
          • Connect with us
          • Work with us
          FAQctuary 2020-1 : Features with flat partial dependence plots: not important?
          02/04/2020
          Detralytics is officially an IABE accredited trainer
          10/05/2020
          Detranote_2020-02 - Algorithmes d'apprentissage_Page_01
          Detra Note 2020-2
          Quelles limites pour l'application des algorithmes d'apprentissage en assurance ?

          Dans cette nouvelle Detra Note, Arthur Charpentier et Michel Denuit évoquent les limites de l’application des algorithmes prédictifs en assurance en revenant sur les notions de segmentation des risques et d’hétérogénéité.

          Une étape essentielle du processus de tarification est le choix de l'algorithme qui permettra de calculer la prime à partir de données passées.

          En assurance, les modèles prédictifs sont partout : il peut s'agir de calculer la prime demandée pour couvrir les dommages causés à un bien, ou encore d'un score interne de suspicion de fraude sur un sinistre.
          Share

          Related posts

          Happy Learning Hour by Detralytics
          28/07/2023

          5 Oct. 2023 | Happy Learning Hours – Insurance Pricing


          Read more
          Modélisation des taux d'intérêt et de l'inflation
          26/07/2023

          8, 10 et 13 nov. 2023 | Modélisation des taux d’intérêt et de l’inflation


          Read more
          19/07/2023

          Detra Note 2023-5 | Wasserstein boosting trees algorithm for count data, with application to claim frequencies in motor insurance


          Read more
          © 2023 detralytics.com. All Rights Reserved - Designed by La Dalle Creative
          • Cookie Policy (EU)
          • Terms & conditions – Disclaimer
          Manage Cookie Consent
          To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data. Not consenting or withdrawing consent, may adversely affect certain features and functions.
          Functional Always active
          The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
          Preferences
          The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
          Statistics
          The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
          Marketing
          The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
          Manage options Manage services Manage vendors Read more about these purposes
          View preferences
          {title} {title} {title}

          Insert/edit link

          Enter the destination URL

          Or link to existing content

            No search term specified. Showing recent items. Search or use up and down arrow keys to select an item.