Abstract

Boosting emerged from the field of machine learning and became rapidly popular among insurance analysts. The Tweedie and Binomial distributions are the most commonly used in insurance for regression analysis. Hainaut et al. (2022) showed that boosting can be conducted directly on the response under Tweedie loss function and log-link, by adapting the weights at each iteration step. In this note, we recall the results of Hainaut et al. (2022) and we supplement them with an easy probabilistic interpretation to the boosting procedure. Next, we draw a parallel between these results and those established by Hastie et al. (2009) for the Bernoulli loss function and logit-link: Hastie et al. (2009) highlighted that, as an approximation, boosting can also be performed directly with responses under Bernoulli loss function and logit-link. Interestingly, we show that this observation can actually been extended to the Binomial case.

Keywords: Clustering analysis, unsupervised learning, k-means, spectral clustering.

Sector: Insurance

Expertise: Machine learning

Authors: Julien Trufin

 

Publisher: Detralytics

Date: March 2025

Language: English

Pages: 12

Reference: Detra Note 2025-1

 

About the authors

Julien Trufin

Julien Trufin

Julien est Scientific Advisor chez Detralytics et Professeur en sciences actuarielles au sein du département de mathématiques de l’Université Libre de Bruxelles. Il possède une expérience en tant que consultant et un solide parcours académique développé au sein d’institutions de renom, dont l’Université Laval (Canada), l’UCL et l’ULB (Belgique). Chez Detralytics, Julien encadre les jeunes talents, dispense des formations de pointe, stimule l’innovation et supervise les projets de R&D.