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Boosting emerged from the field of machine learning and became rapidly popular among 
insurance analysts. The Tweedie and Binomial distributions are the most commonly used in 
insurance for regression analysis. Hainaut et al. (2022) showed that boosting can be conducted 
directly on the response under Tweedie loss function and log-link, by adapting the weights at 
each iteration step. In this note, we recall the results of Hainaut et al. (2022) and we supplement 
them with an easy probabilistic interpretation to the boosting procedure. Next, we draw a 
parallel between these results and those established by Hastie et al. (2009) for the Bernoulli 
loss function and logit-link: Hastie et al. (2009) highlighted that, as an approximation, boosting 
can also be performed directly with responses under Bernoulli loss function and logit-link. 
Interestingly, we show that this observation can actually been extended to the Binomial case.
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1 Introduction

Boosting emerged from the field of machine learning and became rapidly popular
among insurance analysts. Broadly speaking, boosting is an iterative fitting proce-
dure using weak, or base learners. In a regression context, weak learners have rigid
parametric forms and cannot accurately adapt to the data under consideration. In
each iteration, boosting fits a weak learner that improves the fit of the overall model
such that the ensemble arrives at an accurate prediction. We refer the readers to
Denuit et al. (2019b, 2020) for an extensive treatment of boosting in the context of
insurance, with applications to tree-based methods and neural networks.

Boosting requires that the analyst first decides which metric should be optimized
for estimating the score. In the boosting terminology, this metric is usually referred
to as the “loss function”. To ease numerical aspects, boosting is often applied on
gradients of the loss function, that is, on the gradients of the deviance function in
insurance applications. However, Hainaut et al. (2022) showed that there is often no
need to boost gradients in insurance applications. As proved in their Proposition 3.1,
boosting can easily be performed directly with responses under Tweedie loss function
and log-link.

In this note, we recall the results of Hainaut et al. (2022) and we provide an easy
probabilistic interpretation to the boosting procedure under Tweedie loss function
and log-link. Then, we also recall that boosting can also be performed directly with
responses under Bernoulli loss function and logit-link and we extend this observation
to the Binomial loss function.

2 Insurance pricing and boosting

2.1 Insurance pricing

In actuarial pricing, the aim is to evaluate the pure premium as accurately as possible.
The target is the conditional expectation µ(X) = E[Y |X] of the response Y (claim
number or claim amount for instance) given the available information summarized
in a vector X of features X1, X2, . . . , Xp. The function x 7→ µ(x) = E[Y |X = x]
is unknown to the actuary and is approximated by a working predictor x 7→ µ̂(x)
entering premium calculation.

Lack of accuracy for µ̂(x) is defined by the generalization error

Err(µ̂) = E [L(Y, µ̂(X))] ,

where L(., .) is the loss function measuring the discrepancy between its two arguments
and the expected value is over the joint distribution of (Y,X). The goal is to find a
function x 7→ µ̂(x) of the features minimizing the generalization error.
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2.2 Boosting

Ensemble techniques assume structural models of the form

µ(x) = g−1 (score(x)) = g−1

(
M∑
m=1

T (x; am)

)
, (2.1)

where g is the link function (assumed to be monotone and differentiable) and T (x; am),
m = 1, 2, . . . ,M , are usually simple functions of the features x, characterized by pa-
rameters am. In (2.1), the score is the function of features x mapped to µ(x) by the
inverse of the link function g.

Let
D = {(ν1, y1,x1), (ν2, y2,x2), . . . , (νn, yn,xn)} ,

be the set of observations used to fit the model µ̂, called training set, where νi denotes
the weight of observation i. Estimating a score of the form

score(x) =
M∑
m=1

T (x; am) ,

by minimizing the corresponding training sample estimate of the generalized error

min
{am}M1

n∑
i=1

νiL

(
yi, g

−1

(
M∑
m=1

T (xi; am)

))
(2.2)

is in general infeasible. It requires computationally intensive numerical optimization
techniques. One way to overcome this problem is to approximate the solution to (2.2)
by using a greedy forward stagewise approach, also called boosting.

Forward stagewise additive modeling consists in sequentially fitting a single func-
tion and adding it to the expansion of prior fitted terms. Each fitted term is not
readjusted as new terms are added into the expansion, contrarily to a stepwise ap-
proach where previous terms are each time readjusted when a new one is added.
Specifically, we start by computing

â1 = argmin
a1

n∑
i=1

νiL
(
yi, g

−1 (ŝcore0(xi) + T (xi; a1)
))
,

where ŝcore0(x) is an initial guess (for instance, just an intercept). Then, at each
iteration m ≥ 2, we solve the subproblem

âm = argmin
am

n∑
i=1

νiL
(
yi, g

−1 (ŝcorem−1(xi) + T (xi; am)
))
, (2.3)
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with
ŝcorem−1(xi) = ŝcorem−2(xi) + T (xi; âm−1).

Boosting is thus an iterative method based on the idea that combining many simple
functions should result in a powerful one. In a boosting context, the simple functions
T (x; am) are called weak learners or base learners.

3 Tweedie loss functions and log-link

3.1 Tweedie losses

The Tweedie family of distributions regroups the members of the Exponential Disper-
sion family having power variance functions V (µ) = µξ for some ξ. From e.g. Denuit
et al. (2019a, Table 4.7), the Tweedie deviance loss function is given by

L(Y, µ̂(X)) =



(Y − µ̂(X))2 if ξ = 0,

2
(
Y ln Y

µ̂(X)
− (Y − µ̂(X))

)
if ξ = 1,

2
(
− ln Y

µ̂(X)
+ Y

µ̂(X)
− 1
)

if ξ = 2,

2
(

max{Y,0}2−ξ
(1−ξ)(2−ξ) −

Y µ̂(X)1−ξ

1−ξ + µ̂(X)2−ξ

2−ξ

)
otherwise (ξ > 0).

(3.1)

For ξ = 0, we recover the L2 loss function whereas ξ = 1 and 2 correspond to the
Poisson and Gamma deviance functions, respectively.

3.2 Log-link function

3.2.1 Result of Hainaut et al. (2022)

Hainaut et al. (2022) showed in their Proposition 3.1 that under Tweedie loss function
and log-link, the subproblem (2.3) can be rewritten as

âm = argmin
am

n∑
i=1

νi,mL (r̃i,m, exp (T (xi; am))) ,

where νi,m = νi exp(ŝcorem−1(xi))
2−ξ and r̃i,m = yi

exp(ŝcorem−1(xi))
. In words, the mth

iteration of the boosting procedure reduces to build a single weak learner on the
working training set

D(m) = {(νi,m, r̃i,m,xi), i = 1, . . . , n}

using the Tweedie deviance loss and the log-link function. The weights are each time
updated together with the responses.
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3.2.2 Probabilistic interpretation

There is an easy probabilistic interpretation to this boosting algorithm. Recall that
if Y obeys the Tweedie distribution with mean µ, power parameter ξ and weight
ν then for any positive constant c, cY is Tweedie with mean cµ, the same power
parameter and modified weight ν(c)ξ−2. One says that the Tweedie distributions are
closed under this type of scale transformation. See e.g. Denuit et al. (2019a) for a
proof. Since the essence of boosting consists in treating ŝcorem−1(xi) as a constant to
estimate am, this means that we can equivalently work with response r̃i,m obeying the
Tweedie distribution with adapted weight νi,m to perform that estimation. This is a
direct application of the result recalled earlier with c = 1/ exp(ŝcorem−1(xi)). This
process can even be performed in an iterative way, by dividing the response r̃i,m with
exp(T (xi; am)) and multiplying νi,m with exp((2− ξ)T (xi; am)) at each step.

Notice that in the Gaussian case (ξ = 0), the boosting procedure described here
differs from the classical gradient boosting algorithm with L2 loss, which uses identity
link and raw residuals (current estimate subtracted from the response) whereas here,
we work with ratios under log-link.

At each step of the boosting algorithm, the response is thus Tweedie distributed
so that the loss function selected for the original responses yi (and weights νi) is still
the right choice at iteration m for new responses r̃i,m (and weights νi,m). This is a
direct consequence of the closure property of Tweedie distributed responses Y under
scale transformation of the type cY .

4 Binomial loss function and logit-link

4.1 Binomial loss

Boosting can thus be conducted directly on the response under Tweedie loss function
and log-link, by adapting the weights at each iteration step.

Let us now consider that the response Y obeys the Binomial distribution with
Y ∈ {0, 1, . . . , k}, i.e.

P[Y = y|X = x] =

(
k

y

)
q(x)y(1− q(x))k−y, y = 0, 1, . . . , k,

where the Binomial coefficient is defined as(
k

y

)
=

k!

y!(k − y)!
.

From Denuit et al. (2019a, Table 4.7), the Binomial deviance loss function is given
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by

L(Y, µ̂(X)) = 2

(
Y ln

Y

µ̂(X)
+ (k − Y ) ln

k − Y
k − µ̂(X)

)
(4.1)

where µ̂(X) = kq̂(X). For model estimation, we can work with

L(Y, µ̂(X)) = −Y ln µ̂(X)− (k − Y ) ln(k − µ̂(X))

= −Y ln q̂(X)− (k − Y ) ln(1− q̂(X)) (4.2)

since the terms in (4.1) that not depend on µ̂ are irrelevant for model estimation.

4.2 Logit-link function

4.2.1 Particular case: k = 1

Let us first consider the case where k = 1, i.e. Y follows a Bernoulli distribution. In
actuarial science, such situations arise when Y represents for instance the occurrence
of at least one claim for the policyholder or the detection of a fraudulent case over
the observation period. Considering the logit link function g(x) = ln

(
x

1−x

)
in (4.2),

we get

L
(
Y, g−1(ŝcore(X))

)
= −Y ln g−1(ŝcore(X))− (1− Y ) ln(1− g−1(ŝcore(X)))

= −Y ln

(
1

1 + e−ŝcore(X)

)
− (1− Y ) ln

(
1− 1

1 + e−ŝcore(X)

)
= Y ln

(
1 + e−ŝcore(X)

)
− (1− Y ) ln

(
e−ŝcore(X)

1 + e−ŝcore(X)

)
= Y ln

(
1 + e−ŝcore(X)

)
+ (1− Y )ŝcore(X) + (1− Y ) ln

(
1 + e−ŝcore(X)

)
= (1− Y )ŝcore(X) + ln

(
1 + e−ŝcore(X)

)
= ln

(
e(1−Y )ŝcore(X)

)
+ ln

(
1 + e−ŝcore(X)

)
= ln

(
e(1−Y )ŝcore(X) + e−Y ŝcore(X)

)
= ln

(
1 + e−ŝcore(X)(2Y−1)

)
.

This latter expression is equivalent to formula (10.18) in Hastie et al. (2009) where
the authors rather work with the response Y ′ = 2Y − 1 ∈ {−1, 1}.

The loss function L (Y ′, score(X)) = ln
(
1 + e−score(X)Y ′

)
contains the exponential

loss e−score(X)Y ′ . Hastie et al. (2009) point out that both loss functions L (Y ′, score(X))
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and e−score(X)Y ′ lead to the same solution at the population level. This constitutes a
motivation to replace the subproblem (2.3) for Bernoulli loss with logit-link with

âm = argmin
am

n∑
i=1

νi exp
(
−(2yi − 1)

(
ŝcorem−1(xi) + T (xi; am)

))
,

which in turn, can be rewritten as

âm = argmin
am

n∑
i=1

νi,m exp (−(2yi − 1)T (xi; am)) , (4.3)

where νi,m = νi exp(−(2yi − 1)ŝcorem−1(xi)).
As stated in Hastie et al. (2009), it is worth noticing that although both the

exponential loss and Binomial deviance yield the same solution when applied to the
population joint distribution, the same is not true for finite data sets.

As for Tweedie losses and log-link, the mth iteration (4.3) of the boosting pro-
cedure with the exponential loss can be seen as building a single weak learner on a
working training set, here given by

D(m) = {(νi,m, yi,xi), i = 1, . . . , n}.

The weights are each time updated while the responses remain unchanged. The main
difference with the Tweedie case is that the weights νi,m depend on the response yi.
Observations with yi = 0 have their weights νi scaled by a factor exp(ŝcorem−1(xi)),
so that the higher the current scores ŝcorem−1(xi), the greater the weights νi,m at
the mth iteration. On the contrary, observations with yi = 1 have their weights
νi scaled by a factor exp(−ŝcorem−1(xi)), which means that the higher the current
scores ŝcorem−1(xi), the lower the weights νi,m at the mth iteration. Thus, at each
iteration, the boosting procedure puts more weights to observations that are not well
fitted by the estimates obtained so far. As mentioned in Hastie et al. (2009), the
forward stagewise additive modeling using the exponential loss function is actually
equivalent to AdaBoost.M1 algorithm (see Algorithm 10.1 in Hastie et al., 2009).

4.2.2 General case

Consider now the cases where k ≥ 1. The loss associated with the observation
(νi, yi,xi) is given by

L(yi, µ̂(xi)) = −yi ln q̂(xi)− (k − yi) ln(1− q̂(xi)),

which can be rewritten as

L(yi, µ̂(xi)) =
k∑
j=1

−yij ln q̂(xi)− (1− yij) ln(1− q̂(xi))
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with

yij =

{
0 for j = 1, . . . , k − yi,
1 for j = k − yi + 1, . . . , k.

The loss L(yi, µ̂(xi)) can thus be decomposed as the sum of k terms where the jth term
(j = 1, . . . , k) is the Bernoulli loss associated with the pseudo-observation (νi, yij,xi).

Therefore, one sees that it is equivalent to work with the Binomial loss and the
observations {(νi, yi,xi), i = 1, . . . , n} or to work with the Bernoulli loss and the
pseudo-observations {(νi, yij,xi), i = 1, . . . , n, j = 1, . . . , k}. The Binomial case can
therefore be reduced to the Bernoulli case studied in the previous section.

This motivates the fact that the mth iteration of the boosting procedure (2.3)
with the logit-link function can be approximated as building a single weak learner
with the exponential loss on the working training set

D(m) = {(νij,m, yij,xi), i = 1, . . . , n, j = 1, . . . , k},

where νij,m = νi exp(−(2yij − 1)ŝcorem−1(xi)).

5 Conclusion

Boosting is a powerful machine learning technique used to improve the accuracy of
predictive models by combining the strengths of multiple weak learners. Tweedie and
Binomial loss functions are the most commonly used loss functions for score estimation
in insurance applications. While boosting is often applied on gradients of the selected
loss function, we recall that there is no need to boost gradient under Tweedie loss
function and log-link, as shown in Hainaut et al. (2022). Moreover, we motivate the
fact that boosting with Binomial loss function and logit-link can be reduced to the
Bernoulli case and hence be approximated by a boosting with the exponential loss
which does not require the computation of gradients of the loss function.
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