Abstract

One of the objectives of ensemble techniques is to improve model accuracy by driving down the variance without affecting too much the bias. In this note, we consider bagging trees. Bagging trees is an ensemble technique which consists in combining several regression trees fitted on different bootstrap samples of the training set. We demonstrate that bagging trees performs better than one of its constituent trees in the sense of the expected generalization error. Moreover, we show through an example that bagging trees outperforms not only one of its constituent tree but also the best decision tree built on the entire training set.

Keywords: Bagging trees, regression tree, generalization error, Poisson deviance loss.

Sector: Insurance

Authors: Candy Mahirwe,

Michel Denuit and Julien Trufin

Publisher: Detralytics

Date: November 2020

Language: English

Pages: 25

Reference : Detra Note 2020-4

About the authors

Candy Mahirwe

Candy is an Expert at Detralytics. During her various missions, Candy has worked on IAS19 valuation of pension plans in a consultancy firm; on the creation of an internal note about the analysis of spreads on loans of an insurance company; and as a life product manager in the actuarial department of an insurance company. Prior to joining Detralytics, Candy worked as an intern at AG Insurance. 

Michel Denuit

Michel Denuit

Michel est Conseiller Scientifique Honoraire chez Detralytics, ainsi que professeur en sciences actuarielles à l’Université Catholique de Louvain. Il dispose d’une expérience internationale en tant que professeur invité et a initié de nombreux projets en collaboration avec l’industrie. Au sein de Detralytics, Michel accompagne les jeunes talents, dispense des formations de pointe, stimule l’innovation et supervise des projets de R&D.

Julien Trufin

Julien Trufin

Julien est Scientific Advisor chez Detralytics et Professeur en sciences actuarielles au sein du département de mathématiques de l’Université Libre de Bruxelles. Il possède une expérience en tant que consultant et un solide parcours académique développé au sein d’institutions de renom, dont l’Université Laval (Canada), l’UCL et l’ULB (Belgique). Chez Detralytics, Julien encadre les jeunes talents, dispense des formations de pointe, stimule l’innovation et supervise les projets de R&D.