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One of the objectives of ensemble techniques is to improve model accuracy by driving down 
the variance without affecting too much the bias. In this note, we consider bagging trees. 
Bagging trees is an ensemble technique which consists in combining several regression trees 
fitted on different bootstrap samples of the training set. We demonstrate that bagging trees 
performs better than one of its constituent trees in the sense of the expected generalization 
error. Moreover, we show through an example that bagging trees outperforms not only one of
its constituent tree but also the best decision tree built on the entire training set.
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Chapter 1

Introduction

The expected generalization error of a model could be reduced by driving down the variance
of the model without increasing too much the bias. Ensemble methods are relevant tools to
perform this task. The principle of ensemble methods based on randomization consists in in-
troducing random perturbations into the training procedure in order to get different models
from a single training set D and combining them to obtain the estimate of the ensemble.

Bagging is one of the first ensemble methods proposed in the literature. This algorithm is used
for reducing the variance of an estimate. Typically, it works well for high variance and low bias
procedures, such as regression trees.

In this note, we introduce the concepts of expected generalization error and randomized learning
procedures in Chapter 2. Then, Chapter 3 is devoted to bagging trees and demonstrates the
advantage of this ensemble method compared to one of its constituent trees. We also show
through an example that bagging trees outperforms the best decision tree built on the entire
training set. The final chapter briefly concludes the note.



Chapter 2

Model Performance

2.1 Generalization error

We denote by
L = {(y1,x1), (y2,x2), . . . , (yn,xn)} (2.1)

the set of observations available to the insurer, where yi and xi are the response and the features
available for policyholder i. This dataset is called the learning set. The general problem of
supervised learning can be stated as finding a model µ̂ built on the learning set L (or only on a
part of L, as discussed thereafter) which minimizes the generalization error. The generalization
error, also known as expected prediction error, of µ̂ is defined as follows:

Définition 2.1.1. The generalization error of the model µ̂ is

Err(µ̂) = E [L(Y, µ̂(X))] , (2.2)

where L(., .) is a function measuring the discrepancy between its two arguments, called loss
function, X is the random vector gathering the observable features and Y is the response vari-
able.

The goal is thus to find a function of the covariates which predicts at best the response, that
is, which minimizes the generalization error. The model performance is evaluated according to
the generalization error which depends on a predefined loss function. A simple estimate of the
generalization error is given by

Êrr(µ̂) =
1

n

n∑
i=1

L(yi, µ̂(xi)). (2.3)

In the ED (Exponential Dispersion) family setting, the appropriate choice for the loss function
is then related to the deviance. It suffices to observe that the regression model µ̂ maximizing
the log-likelihood function LF (µ̂) also minimizes the corresponding deviance D(µ̂), so that
(2.3) becomes

Êrr(µ̂) =
D(µ̂)

n
. (2.4)

Notice that the expectation in (2.2) is taken over all possible data, that is, with respect to the
probability distribution of the random vector (Y,X) assumed to be independent of the learning
set L.
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2.2 Estimates

2.2 Estimates

The performance of a model is evaluated throughout the generalization error Err(µ̂). In prac-
tice, we usually do not know the probability distribution from which the observations are drawn,
making the direct evaluation of the generalization error Err(µ̂) not feasible. Hence, the set of
observations available to the insurer often constitutes the only data on which the model needs
to be fitted and its generalization error estimated.

2.2.1 Training sample estimate

The learning set
L = {(y1,x1), (y2,x2), . . . , (yn,xn)} (2.5)

constitutes the only data available to the insurer. When the whole learning set is used to fit
the model µ̂, the generalization error Err(µ̂) can only be estimated on the same data as the
ones used to build the model, that is,

Êrr
train

(µ̂) =
1

n

n∑
i=1

L(yi, µ̂(xi)). (2.6)

This estimate is called the training sample estimate and has been introduced in (2.3). In our
setting, we thus have

Êrr
train

(µ̂) =
D(µ̂)

n
. (2.7)

Typically, the training sample estimate (2.6) will be less that the true generalization error,
because the same data is being used to fit the model and assess its error. A model typically
adapts to the data used to train it, and hence the training sample estimate will be an overly
optimistic estimate of the generalization error.

2.2.2 Validation sample estimate

The training sample estimate (2.6) directly evaluates the accuracy of the model on the dataset
used to build the model. While the training sample estimate is useful to fit the model, as
we aim to minimize it (the deviance in our context) when we build the model, the resulting
estimate for the generalization error is likely to be very optimistic since the model is precisely
built to reduce it. This is of course an issue when we aim to assess the predictive performance
of the model, namely its accuracy on new data.
As actuaries generally deal with massive amounts of data, a better approach is to divide the
learning set L into two disjoint sets D and D, called training set and validation set, and to use
the training set for fitting the model and the validation set for estimating the generalization
error of the model. The learning set is thus partitioned into a training set

D = {(yi,xi); i ∈ I}

and a validation set
D = {(yi,xi); i ∈ I},
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2.3 Decomposition of the generalized error

with I ⊂ {1, . . . , n} labeling the observations in D considered for fitting the model and I =

{1, . . . , n}\I labelling the remaining observations of L used to assess the predictive accuracy
of the model. The validation sample estimate of the generalization error of the model µ̂ that
has been built on the training set D is then given by

Êrr
val
(µ̂) =

1

|I|

∑
i∈I

L(yi, µ̂(xi)), (2.8)

while the training sample estimate (2.9) now writes

Êrr
train

(µ̂) =
1

|I|
∑
i∈I

L(yi, µ̂(xi))

=
Dtrain(µ̂)

|I|
, (2.9)

where we denote by Dtrain(µ̂) the deviance computed from the observations composing the
training set. As a rule-of-thumb, the training set usually represents 80% of the learning set
and the validation set the remaining 20%. Of course, this allocation depends on the problem
under consideration. In any case, the splitting of the learning set must be done in a way that
observations in the training set can be considered independent from those in the validation
set and drawn from the same population. Usually, this is guaranteed by drawing both sets at
random from the learning set.
Training and validation sets should be as homogeneous as possible. Creating those two sets
by taking simple random samples, as mentioned above, is usually sufficient to guarantee sim-
ilar data sets. However, when considering the annual number of claims in MTPL insurance
for instance, the distribution of the response can be quite different between the training and
validation sets. Typically, the vast majority of the policyholders makes no claim over the year
(say 95%). Some policyholders experience one claim (say 4%) while only a few of them have
more than one claim (say 1% with two claims). In such a situation, because the proportions
of policyholders with one or two claims are small compared to the proportion of policyholders
with no claim, the distribution of the response can be very different between the training and
validation sets.
To address this potential issue, random sampling can be applied within subgroups, a subgroup
being a set of observations with the same response. In our example, we would thus have three
subgroups: a first one made of the observations with no claim (95% of the observations), a
second one with the policyholders having one claim (4% of the observations) and a third one
with the policyholders having two claims (1% of the observations). Applying the randomization
within these subgroups is called stratified random sampling.

2.3 Decomposition of the generalized error

The generalization error Err(µ̂) of a model µ̂ is thus defined as

Err(µ̂) = E [L(Y, µ̂(X))] . (2.10)
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2.3 Decomposition of the generalized error

In the same way, the generalization error of µ̂ can be defined for a fixed value X = x as

Err(µ̂(x)) = E [L(Y, µ̂(X))|X = x] . (2.11)

Notice that averaging the local errors Err(µ̂(x)) enables to recover the generalization error
Err(µ̂), that is,

Err(µ̂) = E [Err(µ̂(X))] . (2.12)

2.3.1 Squared error loss

Consider that the loss function is the squared error loss. In our ED family setting, it amounts
to assume that the responses are normally distributed. The generalization error of model µ̂ at
X = x becomes

Err(µ̂(x)) = = E
[
(Y − µ̂(x))2

∣∣∣X = x
]

= E
[
(Y − µ(x) + µ(x)− µ̂(x))2

∣∣∣X = x
]

= E
[
(Y − µ(x))2

∣∣∣X = x
]
+ E

[
(µ(x)− µ̂(x))2

∣∣∣X = x
]

+2E
[
(Y − µ(x)) (µ(x)− µ̂(x))

∣∣∣X = x
]

= E
[
(Y − µ(x))2

∣∣∣X = x
]
+ E

[
(µ(x)− µ̂(x))2

∣∣∣X = x
]

since

E
[
(Y − µ(x)) (µ(x)− µ̂(x))

∣∣∣X = x
]

= (µ(x)− µ̂(x)) E
[
(Y − µ(x))

∣∣∣X = x
]

= (µ(x)− µ̂(x)) (E [Y |X = x]− µ(x))
= 0

by definition of µ(x) = E [Y |X = x]. So, it comes

Err (µ̂(x)) = Err (µ(x)) + (µ(x)− µ̂(x))2 . (2.13)

By (2.12), the generalization error Err(µ̂) thus writes

Err (µ̂) = Err (µ) + E
[
(µ(X)− µ̂(X))2

]
. (2.14)

The generalization error of µ̂ can be expressed as the sum of two terms, the first one corre-
sponding to the generalization error of the true model µ and the second one representing the
estimation error, that is, the discrepancy of µ̂ from the true model µ. The further our model
from the true one, the larger the generalization error. The generalization error of the true
model is called the residual error and is irreducible. Indeed, we have

Err (µ̂) ≥ Err (µ) ,

which means that the smallest generalization error coincides with the one associated to the true
model.
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2.4 Expected generalization error

2.3.2 Poisson deviance loss

Consider that the loss function is the Poisson deviance. This choice is appropriate when the
responses are assumed to be Poisson distributed, as when examining the number of claims for
instance. The generalization error of model µ̂ at X = x is then given by

Err (µ̂(x)) = 2E
[
Y ln

(
Y

µ̂(x)

)
− (Y − µ̂(x))

∣∣∣X = x

]
= 2E

[
Y ln

(
Y

µ(x)

)
− (Y − µ(x))

∣∣∣X = x

]
+2E

[
µ̂(x)− µ(x)− Y ln

(
µ̂(x)

µ(x)

) ∣∣∣X = x

]
= 2E

[
Y ln

(
Y

µ(x)

)
− (Y − µ(x))

∣∣∣X = x

]
+2 (µ̂(x)− µ(x))− 2E [Y |X = x] ln

(
µ̂(x)

µ(x)

)
.

Replacing E [Y |X = x] by µ(x), we get

Err (µ̂(x)) = Err (µ(x)) + 2 (µ̂(x)− µ(x))− 2µ(x) ln

(
µ̂(x)

µ(x)

)
= Err (µ(x)) + 2µ(x)

(
µ̂(x)

µ(x)
− 1− ln

(
µ̂(x)

µ(x)

))
. (2.15)

The generalization error Err(µ̂) thus writes

Err (µ̂) = Err (µ) + 2E
[
µ(X)

(
µ̂(X)

µ(X)
− 1− ln

(
µ̂(X)

µ(X)

))]
. (2.16)

As for the squared error loss, the generalization error of µ̂ can be decomposed as the sum of
the generalization error of the true model and an estimation error E[EP (µ̂(X))], where

EP (µ̂(x)) = 2µ(x)

(
µ̂(x)

µ(x)
− 1− ln

(
µ̂(x)

µ(x)

))
.

Notice that EP (µ̂(x)) is always positive because y → y− 1− ln y is positive on R+, so that we
have

Err (µ̂) ≥ Err (µ) .

2.4 Expected generalization error

The model µ̂ under consideration is estimated on the training set D so that it depends on D.
To make explicit the dependence on the training set, we use from now on both notations µ̂
and µ̂D for the model under interest. We assume in a first time there is only one model which
corresponds to a given training set, that is, we consider learning procedures that are said to be
deterministic. Learning procedures that can produce different models for a fixed training set
are discussed in Section 2.4.4.
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2.4 Expected generalization error

The generalization error Err(µ̂D) is evaluated conditional on the training set. That is, the model
µ̂D under study is first fitted on the training set D before computing the expectation over all
possible observations independently from the training set D. In that sense, the generalization
error Err(µ̂D) gives an idea of the general accuracy of the learning procedure for the particular
training set D. In order to study the general behavior of our learning procedure, and not only
its behavior for a specific training set, it is interesting to evaluate the learning procedure on
different training sets of the same size.
The training set D is itself a random variable sampled from a distribution usually unknown in
practice, so that the generalization error Err(µ̂D) is in its turn a random variable. In order to
study the general performance of the learning procedure, it is then of interest to take the average
of the generalization error Err (µ̂D) over D, that is, to work with the expected generalization
error ED [Err (µ̂D)] over the models learned from all possible training sets and produced with
the learning procedure under investigation.
The expected generalization error is thus given by

ED [Err (µ̂D)] = ED [EX [Err (µ̂D(X))]] , (2.17)

which can also be expressed as

ED [Err (µ̂D)] = EX [ED [Err (µ̂D(X))]] . (2.18)

We can first determine the expected local error ED [Err (µ̂D(X))] in order to get the expected
generalization error.

2.4.1 Squared error loss

When the loss function is the squared error loss, we know from equation (2.13) that the gener-
alization error at X = x writes

Err (µ̂D(x)) = Err (µ(x)) + (µ(x)− µ̂D(x))2 . (2.19)

The true model µ is independent of the training set, so is the generalization error Err (µ(x)).
The expected generalization error of µ̂ at X = x is then given by

ED [Err (µ̂D(x))] = Err (µ(x)) + ED
[
(µ(x)− µ̂D(x))2

]
.

The first term is the local generalization error of the true model while the second term is the
expected estimation error at X = x, which can be re-expressed as

ED
[
(µ(x)− µ̂D(x))2

]
= ED

[
(µ(x)− ED [µ̂D(x)] + ED [µ̂D(x)]− µ̂D(x))2

]
= ED

[
(µ(x)− ED [µ̂D(x)])

2]+ ED
[
(ED [µ̂D(x)]− µ̂D(x))2

]
+2ED [(µ(x)− ED [µ̂D(x)]) (ED [µ̂D(x)]− µ̂D(x))]

= ED
[
(µ(x)− ED [µ̂D(x)])

2]+ ED
[
(ED [µ̂D(x)]− µ̂D(x))2

]
= (µ(x)− ED [µ̂D(x)])

2 + ED
[
(ED [µ̂D(x)]− µ̂D(x))2

]
7



2.4 Expected generalization error

since

ED [(µ(x)− ED [µ̂D(x)]) (ED [µ̂D(x)]− µ̂D(x))]
= (µ(x)− ED [µ̂D(x)])ED [(ED [µ̂D(x)]− µ̂D(x))]
= (µ(x)− ED [µ̂D(x)]) (ED [µ̂D(x)]− ED [µ̂D(x)])

= 0. (2.20)

Therefore, the expected generalization error at X = x is given by

ED [Err (µ̂D(x))] = Err (µ(x)) + (µ(x)− ED [µ̂D(x)])
2

+ED
[
(ED [µ̂D(x)]− µ̂D(x))2

]
. (2.21)

This is the bias-variance decomposition of the expected generalization error.
The first term in (2.21) is the local generalization error of the true model, that is, the residual
error. The residual error is independent of the learning procedure and the training set, which
provides in any case a lower bound for the expected generalization error. Notice that in practice,
the computation of this lower bound is often unfeasible since the true model is usually unknown.
The second term measures the discrepancy between the average estimate ED [µ̂D(x)] and the
value of the true model µ(x), and corresponds to the bias term. The third term measures the
variability of the estimate µ̂D(x) over the models trained from all possible training sets, and
corresponds to the variance term.
From (2.21), the expected generalization error writes

ED [Err (µ̂D)] = Err (µ) + EX

{
(µ(X)− ED [µ̂D(X)])2

}
+EX

{
ED
[
(ED [µ̂D(X)]− µ̂D(X))2

]}
. (2.22)

2.4.2 Poisson deviance loss

In the case of the Poisson deviance loss, we know from equation (2.15) that the local general-
ization error writes

Err (µ̂D(x)) = Err (µ(x)) + EP (µ̂D(x)) (2.23)

where
EP (µ̂D(x)) = 2µ(x)

(
µ̂D(x)

µ(x)
− 1− ln

(
µ̂D(x)

µ(x)

))
. (2.24)

Because the true model µ is independent of the training set, the expected generalization error
ED [Err (µ̂D(x))] can be expressed as

ED [Err (µ̂D(x))] = Err (µ(x)) + ED
[
EP (µ̂D(x))

]
(2.25)

with
ED
[
EP (µ̂D(x))

]
= 2µ(x)

(
ED
[
µ̂D(x)

µ(x)

]
− 1− ED

[
ln

(
µ̂D(x)

µ(x)

)])
.

Locally, the expected generalization error is equal to the generalization error of the true model
plus the expected estimation error which can be attributed to the bias and the estimation

8



2.4 Expected generalization error

fluctuation. Notice that the expected estimation error ED
[
EP (µ̂D(x))

]
is positive since we

have seen that the estimation error EP (µ̂D(x)) is always positive. The generalization error of
the true model is again a theoretical lower bound for the expected generalization error.
From (2.25) and (2.26), the expected generalization error writes

ED [Err (µ̂D)] = Err (µ) + 2EX

{
µ(X)

(
ED
[
µ̂D(X)

µ(X)

]
− 1− ED

[
ln

(
µ̂D(X)

µ(X)

)])}
. (2.26)

2.4.3 Bias and variance

In order to minimise the expected generalization error, it might appear desirable to sacrifice
a bit on the bias provided we can reduce to a large extend the variability of the prediction
over the models trained from all possible training sets. The bias-variance decomposition of
the expected generalization error is used for justifying the performances of ensemble learning
techniques.

2.4.4 Randomized learning procedures

A learning procedure which always produces the same model µ̂D for a given training set D is
said to be deterministic.
There also exist randomized learning procedures that can produce different models for a fixed
training set, such as random forests and boosting. In order to account for the randomness of
the learning procedure, we introduce a random vector Θ which is assumed to fully capture the
randomness of the algorithm. The model µ̂ resulting from the randomized learning procedure
depends on the training set D and also on the random vector Θ, so that we use both notations
µ̂ and µ̂D,Θ for the model under consideration.
The generalization error Err(µ̂D,Θ) is thus evaluated conditional on the training set D and
the random vector Θ. The expected generalization error, which aims to assess the general
accuracy of the learning procedure, is now obtained by taking the average of the generalization
error Err(µ̂D,Θ) over D and Θ. Expression (2.17) becomes

ED,Θ [Err (µ̂D,Θ)] = ED,Θ [EX [Err (µ̂D,Θ(X))]] , (2.27)

which can also be expressed as

ED,Θ [Err (µ̂D,Θ)] = EX [ED,Θ [Err (µ̂D,Θ(X))]] . (2.28)

Again, we can first determine the expected local error ED,Θ [Err (µ̂D,Θ(X))] in order to get the
expected generalization error.
Taking into account the additional source of randomness in the learning procedure, expressions
(2.21) and (2.25) become respectively

ED,Θ [Err (µ̂D,Θ(x))] = Err (µ(x)) + (µ(x)− ED,Θ [µ̂D,Θ(x)])
2

+ED,Θ
[
(ED,Θ [µ̂D,Θ(x)]− µ̂D,Θ(x))2

]
, (2.29)

ED,Θ [Err (µ̂D,Θ(x))] = Err (µ(x)) + ED,Θ
[
EP (µ̂D,Θ(x))

]
, (2.30)

9



2.4 Expected generalization error

and

ED,Θ
[
EP (µ̂D,Θ(x))

]
= 2µ(x)

(
ED,Θ

[
µ̂D,Θ(x)

µ(x)

]
− 1− ED,Θ

[
ln

(
µ̂D,Θ(x)

µ(x)

)])
. (2.31)
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Chapter 3

Bagging trees

3.1 Introduction

The expected generalization error of a model could be reduced by driving down the variance
of the model without increasing too much the bias. Ensemble methods are relevant tools to
perform this task. The principle of ensemble methods based on randomization consists in
introducing random perturbations into the training procedure in order to get different models
from a single training set D and combining them to obtain the estimate of the ensemble.
One ensemble method is considered in this note, namely bagging trees. One issue with trees
is their high variance. There is a high variability of the mean estimate µ̂D(x) over the trees
trained from all possible training sets D. Ensemble methods like bagging trees and random
forests aim to reduce the variance without too much altering bias.
The average estimate ED [µ̂D(x)] has the same bias as µ̂D(x) since

ED [µ̂D(x)] = ED [ED [µ̂D(x)]] , (3.1)

and zero variance, that is,
VarD [ED [µ̂D(x)]] = 0. (3.2)

This motivates the fact of finding a training procedure that produces a good approximation of
the average model in order to stabilize model estimates.
If we assume that we can draw as many training sets as we want, so that we have B training
sets D1,D2, . . . ,DB available, then an approximation of the average model can be obtained by
averaging the regression trees built on these training sets, that is,

ÊD [µ̂D(x)] =
1

B

B∑
b=1

µ̂Db(x). (3.3)

In such a case, the average of the estimate (3.3) with respect to the training sets D1, . . . ,DB is
the average estimate ED [µ̂D(x)], that is,

ED1,...,DB

[
1

B

B∑
b=1

µ̂Db(x)

]
=

1

B

B∑
b=1

EDb [µ̂Db(x)]

= ED [µ̂D(x)] , (3.4)

11



3.2 Bootstrap

while the variance of (3.3) with respect to D1, . . . ,DB is given by

VarD1,...,DB

[
1

B

B∑
b=1

µ̂Db(x)

]
=

1

B2
VarD1,...,DB

[
B∑
b=1

µ̂Db(x)

]

=
1

B2

B∑
b=1

VarDb [µ̂Db(x)]

=
VarD [µ̂D(x)]

B
(3.5)

since estimates µ̂D1(x), . . . , µ̂DB(x) are independent and identically distributed. So, averaging
over B estimates fitted on different training sets leaves the bias unchanged compared to each
individual estimate while it divides the variance by B. The estimate (3.3) is then less variable
than each individual one.
In practice, the probability distribution from which the observations of the training set are
drawn is usually not known so that there is only one training set available. In this context, the
bootstrap approach, used both in bagging trees and random forests, appears to be particularly
useful.

3.2 Bootstrap

Suppose we have independent random variables Y1, Y2, . . . , Yn with common distribution func-
tion F that is unknown and that we are interested in using them to estimate some quantity
θ(F ) associated with F . An estimator

θ̂ = g(Y1, Y2, . . . , Yn)

is available for θ(F ). The distributional properties of θ̂ in terms of the variables Y1, Y2, . . . , Yn
cannot be determined since the distribution function F is not known. The idea of bootstrap is
to estimate F .
The empirical counterpart to F is defined as

F̂n(x) =
#{Yi such that Yi ≤ x}

n
=

1

n

n∑
i=1

I[Yi ≤ x].

Where I is the indicator function.
Thus, the empirical distribution function F̂n puts an equal probability 1

n
on each of the observed

data points Y1, . . . , Yn. The idea behind the non-parametric bootstrap is to simulate sets of
independent random variables

Y
(∗b)
1 , Y

(∗b)
2 , . . . , Y (∗b)

n

obeying the distribution function F̂n, b = 1, 2, . . . , B. This can be done by simulating Ui ∼
Uni(0, 1) and setting

Y
(∗b)
i = yI with I = [nUi] + 1.

Then, for each b = 1, . . . , B, we calculate

θ̂(∗b) = g(Y
(∗b)
1 , Y

(∗b)
2 , . . . , Y (∗b)

n ),

12



3.3 Bagging trees

|I| 1−
(
|I|−1
|I|

)|I|
10 0.651322
100 0.633968
1000 0.632305

10 000 0.632139
100 000 0.632122

Table 3.1: Probability in (3.6) with respect to |I|.

so that the corresponding bootstrap distribution of θ̂ is given by

F ∗
θ̂
(x) =

1

B

B∑
b=1

I[θ̂(∗b) ≤ x].

3.3 Bagging trees

Bagging is one of the first ensemble methods proposed in the literature. Consider a model fitted
to our training set D, obtaining the prediction µ̂D(x) at point x. Bootstrap aggregation or
bagging averages this prediction over a set of bootstrap samples in order to reduce its variance.
The probability distribution of the random vector (Y,X) is usually not known. This latter
distribution is then approximated by its empirical version which puts an equal probability 1

|I|
on each of the observations {(yi,xi); i ∈ I} of the training set D. Hence, instead of simulating
B training sets D1,D2, . . . ,DB from the probability distribution of (Y,X), which is not possible
in practice, the idea of bagging is rather to simulate B bootstrap samples D∗1,D∗2, . . . ,D∗B
of the training set D from its empirical counterpart. Specifically, a bootstrap sample of D is
obtained by simulating independently |I| observations from the empirical distribution of (Y,X)

defined above. A bootstrap sample is thus a random sample of D taken with replacement which
has the same size as D. Notice that, on average, 63.2% of the observations of the training set
are represented at least once in a bootstrap sample. Indeed,

1−
(
|I| − 1

|I|

)|I|
, (3.6)

which is computed in Table 3.1 for different values of |I|, is the probability that a given
observation of the training set is represented at least once. One can see that the value of 63.2%
is already attained for values of |I| around 1000.
Let D∗1,D∗2, . . . ,D∗B be B bootstrap samples of the training set D. For each D∗b, b = 1, . . . , B,
we fit our model, giving estimate µ̂D,Θb

(x) = µ̂D∗b(x). The bagging estimate is then defined by

µ̂bag
D,Θ(x) =

1

B

B∑
b=1

µ̂D,Θb
(x), (3.7)

where Θ = (Θ1 , . . . ,ΘB). Random vectors Θ1 , . . . ,ΘB fully capture the randomness of the
training procedure. For bagging, Θ1 , . . . ,ΘB are independent and identically distributed so

13



3.3 Bagging trees

that Θb is a vector of |I| integers randomly and uniformly drawn in {1, 2, . . . , |I|}. Each
component of Θb indexes one observation of the training set selected in D∗b.
In this note, bagging is applied to regression trees. This provides the following algorithm:

Algorithm: Bagging Trees.

For b = 1 to B do

1. Generate a bootstrap sample D∗b of D.

2. Fit an unpruned tree on D∗b, which gives estimate µ̂D,Θb
(x).

End for

Output: µ̂bag
D,Θ(x) =

1
B

∑B
b=1 µ̂D,Θb

(x).

3.3.1 Bias

For bagging, the bias is the same as the bias of the individual sampled models. Indeed,

Bias(x) = µ(x)− ED,Θ
[
µ̂bag
D,Θ(x)

]
= µ(x)− ED,Θ1 ,...,ΘB

[
1

B

B∑
b=1

µ̂D,Θb
(x)

]

= µ(x)− 1

B

B∑
b=1

ED,Θb
[µ̂D,Θb

(x)]

= µ(x)− ED,Θb
[µ̂D,Θb

(x)] (3.8)

since estimates µ̂D,Θ1 (x), . . . , µ̂D,ΘB
(x) are identically distributed.

However, the bias of µ̂D,Θb
(x) is typically greater in absolute terms than the bias of µ̂D(x) fitted

on D since the reduced sample D∗b imposes restrictions. The improvements in the estimation
obtained by bagging will be a consequence of variance reduction.
Notice that trees are ideal candidates for bagging. They can handle complex interaction struc-
tures in the data and they have relatively low bias if grown sufficiently deep. Because they are
noisy, they will greatly benefit from the averaging.
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3.3 Bagging trees

3.3.2 Variance

The variance of µ̂bag
D,Θ(x) can be written as

VarD,Θ
[
µ̂bag
D,Θ(x)

]
= VarD,Θ1 ,...,ΘB

[
1

B

B∑
b=1

µ̂D,Θb
(x)

]

=
1

B2
VarD,Θ1 ,...,ΘB

[
B∑
b=1

µ̂D,Θb
(x)

]

=
1

B2

{
VarD

[
EΘ1 ,...,ΘB

[
B∑
b=1

µ̂D,Θb
(x)
∣∣∣D]]

+ED

[
VarΘ1 ,...,ΘB

[
B∑
b=1

µ̂D,Θb
(x)
∣∣∣D]]}

= VarD
[
EΘb

[
µ̂D,Θb

(x)
∣∣∣D]]+ 1

B
ED
[
VarΘb

[
µ̂D,Θb

(x)
∣∣∣D]]

(3.9)

since conditionally to D, estimates µ̂D,Θ1 (x), . . . , µ̂D,ΘB
(x) are independent and identically

distributed. The second term is the within-D variance, a result of the randomization due to the
bootstrap sampling. The first term is the sampling variance of the bagging ensemble, a result
of the sampling variability of D itself. As the number of aggregated estimates gets arbitrarily
large, i.e. as B →∞, the variance of µ̂bag

D,Θ(x) reduces to VarD
[
EΘb

[
µ̂D,Θb

(x)
∣∣∣D]].

From (3.9) and

VarD,Θb
[µ̂D,Θb

(x)] = VarD
[
EΘb

[
µ̂D,Θb

(x)
∣∣∣D]]+ ED

[
VarΘb

[
µ̂D,Θb

(x)
∣∣∣D]] , (3.10)

we see that
VarD,Θ

[
µ̂bag
D,Θ(x)

]
≤ VarD,Θb

[µ̂D,Θb
(x)] . (3.11)

The variance of the bagging estimate µ̂bag
D,Θ(x) is smaller than the variance of an individual

estimate µ̂D,Θb
(x). Actually, we learn from (3.9) and (3.10) that the variance reduction is

given by

VarD,Θb
[µ̂D,Θb

(x)]− VarD,Θ
[
µ̂bag
D,Θ(x)

]
=
B − 1

B
ED
[
VarΘb

[
µ̂D,Θb

(x)
∣∣∣D]] , (3.12)

which increases as B increases and tends to ED
[
VarΘb

[
µ̂D,Θb

(x)
∣∣∣D]] when B →∞.

Let us introduce the correlation coefficient ρ(x) between any pair of estimates used in the
averaging which are built on the same training set but fitted on two different bootstrap samples.
Using the definition of the Pearson’s correlation coefficient, we get

ρ(x) =
CovD,Θb ,Θb′

[
µ̂D,Θb

(x), µ̂D,Θb′
(x)
]√

VarD,Θb
[µ̂D,Θb

(x)]
√

VarD,Θb′

[
µ̂D,Θb′

(x)
]

=
CovD,Θb ,Θb′

[
µ̂D,Θb

(x), µ̂D,Θb′
(x)
]

VarD,Θb
[µ̂D,Θb

(x)]
(3.13)
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3.3 Bagging trees

as µ̂D,Θb
(x) and µ̂D,Θb′

(x) are identically distributed. By the law of total covariance, the
numerator in (3.13) can be rewritten as

CovD,Θb ,Θb′

[
µ̂D,Θb

(x), µ̂D,Θb′
(x)
]

= ED
[
CovΘb ,Θb′

[
µ̂D,Θb

(x), µ̂D,Θb′
(x)|D

]]
+CovD

[
EΘb

[µ̂D,Θb
(x)|D] ,EΘb′

[
µ̂D,Θb′

(x)|D
]]

= VarD [EΘb
[µ̂D,Θb

(x)|D]] (3.14)

since conditionally to D, estimates µ̂D,Θb
(x) and µ̂D,Θb′

(x) are independent and identically
distributed. Hence, combining (3.10) and (3.14), the correlation coefficient in (3.13) becomes

ρ(x) =
VarD [EΘb

[µ̂D,Θb
(x)|D]]

VarD,Θb
[µ̂D,Θb

(x)]
(3.15)

=
VarD [EΘb

[µ̂D,Θb
(x)|D]]

VarD
[
EΘb

[
µ̂D,Θb

(x)
∣∣∣D]]+ ED

[
VarΘb

[
µ̂D,Θb

(x)
∣∣∣D]] . (3.16)

The correlation coefficient ρ(x) measures the correlation between a pair of estimates in the
ensemble induced by repeatedly making training sample draws D from the population and
then drawing a pair of bootstrap samples from D.
When ρ(x) is close to 1, the estimates are highly correlated, suggesting that the randomization
due to the bootstrap sampling has no significant effect on the estimates. On the contrary, when
ρ(x) is close to 0, the estimates are de-correlated, suggesting that the randomization due to
the bootstrap sampling has a strong impact on the estimates.
One sees that ρ(x) is the ratio between the variance due to the training set and the total
variance. The total variance is the sum of the variance due to the training set and the variance
due to randomization induced by the bootstrap samples. A correlation coefficient close to 1 and
hence correlated estimates means that the total variance is mostly driven by the training set.
On the contrary, a correlation coefficient close to 0 and hence de-correlated estimates means
that the total variance is mostly due to the randomization induced by the bootstrap samples.
Alternatively, the variance of µ̂bag

D,Θ(x) given in (3.9) can be re-expressed in terms of the corre-
lation coefficient. Indeed, from (3.15) and (3.16), we have

VarD [EΘb
[µ̂D,Θb

(x)|D]] = ρ(x)VarD,Θb
[µ̂D,Θb

(x)] (3.17)

and
ED [VarΘb

[µ̂D,Θb
(x)|D]] = (1− ρ(x))VarD,Θb

[µ̂D,Θb
(x)] , (3.18)

such that (3.9) can be rewritten as

VarD,Θ
[
µ̂bag
D,Θ(x)

]
= VarD [EΘb

[µ̂D,Θb
(x)|D]] + 1

B
ED [VarΘb

[µ̂D,Θb
(x)|D]]

= ρ(x)VarD,Θb
[µ̂D,Θb

(x)] +
(1− ρ(x))

B
VarD,Θb

[µ̂D,Θb
(x)] .

(3.19)

As B increases, the second term disappears, but the first term remains. Hence, when ρ(x) < 1,
one sees that the variance of the ensemble is strictly smaller than the variance of an individual
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3.3 Bagging trees

model. Let us mention that assuming ρ(x) < 1 amounts to suppose that the randomization
due to the bootstrap sampling influences the individual estimates.
Notice that the random perturbation introduced by the bootstrap sampling induces a higher
variance for an individual estimate µ̂D,Θb

(x) than for µ̂D(x), so that

VarD,Θb
[µ̂D,Θb

(x)] ≥ VarD [µ̂D(x)] . (3.20)

Therefore, bagging averages models with higher variances. Nevertheless, the bagging estimate
µ̂bag
D,Θ(x) has generally a smaller variance than µ̂D(x). This comes from the fact that, typically,

the correlation coefficient ρ(x) in (3.19) compensates for the variance increase VarD,Θb
[µ̂D,Θb

(x)]−
VarD [µ̂D(x)], so that the combined effect of ρ(x) < 1 and VarD,Θb

[µ̂D,Θb
(x)] ≥ VarD [µ̂D(x)]

often leads to a variance reduction

VarD [µ̂D(x)]− ρ(x)VarD,Θb
[µ̂D,Θb

(x)] (3.21)

that is positive. Because of their high variance, regression trees very likely benefit from the
averaging procedure .

3.3.3 Expected generalization error

For some loss functions, such as the squared error and Poisson deviance losses, we can show
that the expected generalization error for the bagging estimate µ̂bag

D,Θ(x) is smaller than the
expected generalization error for an individual estimate µ̂D,Θb

(x), that is,

ED,Θ
[
Err

(
µ̂bag
D,Θ(x)

)]
≤ ED,Θb

[Err (µ̂D,Θb
(x))] . (3.22)

However, while it is typically the case with bagging trees, we cannot highlight some situations
where the estimate µ̂bag

D,Θ(x) performs always better than µ̂D(x) in the sense of the expected
generalization error, even for the squared error and Poisson deviance losses.

3.3.3.1 Squared error loss

For the squared error loss, from (2.29), the expected generalization error for µ̂bag
D,Θ(x) is given

by

ED,Θ
[
Err

(
µ̂bag
D,Θ(x)

)]
= Err (µ(x)) +

(
µ(x)− ED,Θ

[
µ̂bag
D,Θ(x)

])2
+VarD,Θ

[
µ̂bag
D,Θ(x)

]
. (3.23)

From (3.8) and (3.11), one observes that the bias term remains unchanged while the variance
decreases compared to the individual estimate µ̂D,Θb

(x), so that we get

ED,Θ
[
Err

(
µ̂bag
D,Θ(x)

)]
= Err (µ(x)) + (µ(x)− ED,Θb

[µ̂D,Θb
(x)])2 + VarD,Θ

[
µ̂bag
D,Θ(x)

]
≤ Err (µ(x)) + (µ(x)− ED,Θb

[µ̂D,Θb
(x)])2 + VarD,Θb

[µ̂D,Θb
(x)]

= ED,Θb
[Err (µ̂D,Θb

(x))] . (3.24)
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For every value of X, the expected generalization error of the ensemble is smaller than the
expected generalization error of an individual model.
Taking the average of (3.24) over X leads to

ED,Θ
[
Err

(
µ̂bag
D,Θ

)]
≤ ED,Θb

[Err (µ̂D,Θb
)] . (3.25)

3.3.3.2 Poisson deviance loss

For the Poisson deviance loss, from (2.30) and (2.31), the expected generalization error for
µ̂bag
D,Θ(x) is given by

ED,Θ
[
Err

(
µ̂bag
D,Θ(x)

)]
= Err (µ(x)) + ED,Θ

[
EP
(
µ̂bag
D,Θ(x)

)]
(3.26)

with

ED,Θ
[
EP
(
µ̂bag
D,Θ(x)

)]
= 2µ(x)

(
ED,Θ

[
µ̂bag
D,Θ(x)

µ(x)

]
− 1− ED,Θ

[
ln

(
µ̂bag
D,Θ(x)

µ(x)

)])
. (3.27)

We have

ED,Θ

[
µ̂bag
D,Θ(x)

µ(x)

]
= ED,Θb

[
µ̂D,Θb

(x)

µ(x)

]
, (3.28)

so that (3.27) can be expressed as

ED,Θ
[
EP
(
µ̂bag
D,Θ(x)

)]
= 2µ(x)

(
ED,Θb

[
µ̂D,Θb

(x)

µ(x)

]
− 1− ED,Θb

[
ln

(
µ̂D,Θb

(x)

µ(x)

)])
−2µ(x)

(
ED,Θ

[
ln

(
µ̂bag
D,Θ(x)

µ(x)

)]
− ED,Θb

[
ln

(
µ̂D,Θb

(x)

µ(x)

)])
= ED,Θb

[
EP (µ̂D,Θb

(x))
]

−2µ(x)
(
ED,Θ

[
ln
(
µ̂bag
D,Θ(x)

)]
− ED,Θb

[ln (µ̂D,Θb
(x))]

)
. (3.29)

Jensen’s inequality implies

ED,Θ
[
ln µ̂bag

D,Θ(x)
]
− ED,Θb

[ln µ̂D,Θb
(x)]

= ED,Θ1 ,...,ΘB

[
ln

(
1

B

B∑
b=1

µ̂D,Θb
(x)

)]
− ED,Θb

[ln µ̂D,Θb
(x)]

≥ ED,Θ1 ,...,ΘB

[
1

B

B∑
b=1

ln µ̂D,Θb
(x)

]
− ED,Θb

[ln µ̂D,Θb
(x)]

= 0, (3.30)

so that combining (3.29) and (3.30) leads to

ED,Θ
[
EP
(
µ̂bag
D,Θ(x)

)]
≤ ED,Θb

[
EP (µ̂D,Θb

(x))
]

(3.31)
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and hence
ED,Θ

[
Err

(
µ̂bag
D,Θ(x)

)]
≤ ED,Θb

[Err (µ̂D,Θb
(x))] . (3.32)

For every value of X, the expected generalization error of the ensemble is smaller than the
expected generalization error of an individual model.

Taking the average of (3.32) over X leads to

ED,Θ
[
Err

(
µ̂bag
D,Θ

)]
≤ ED,Θb

[Err (µ̂D,Θb
)] . (3.33)

Example

We consider an example in car insurance. Four features X = (X1;X2;X3;X4) are supposed to
be available, that are

• X1 = Gender : policyholder’s gender (female or male) ;

• X2 = Age : policyholder’s age (integer values from 18 to 65) ;

• X3 = Split : whether the policyholder splits its annual premium or not (yes or no) ;

• X4 = Sport : whether the policyholder’s car is a sports car or not (yes or no).

The variables X1 ,X2, X3 and X4 are assumed to be independent and distributed as follows :

P[X1 = female] = P[X1 = male] = 0.5;

P[X2 = 18] = P[X2 = 19] = . . . = P[X2 = 65] = 1/48;

P[X3 = yes] = P[X3 = no] = 0.5;

P[X4 = yes] = P[X4 = no] = 0.5. (3.34)

The values taken by a feature are thus equiprobable. The response Y is supposed to be the
number of claims. Given X = x, Y is assumed to be Poisson distributed with expected claim
frequency given by

λ(x) = 0.1× (1 + 0.1I[x1 = male])

×
(
1 +

1√
x2 − 17

)
× (1 + 0.15I[x4 = yes]) , (3.35)

where I[.] is the indicator function.

Being a male increases the expected claim frequency by 10%. The expected claim frequency
smoothly decreases with the age, young drivers being more risky. Splitting its premium does
not influence the expected claim frequency while driving a sports car increases the expected
claim frequency by 15%. In this example, the true model λ(x) is known and we can simulate
realizations of the random vector (Y,X).

19



3.3 Bagging trees

We simulate training sets D made of 100 000 observations and validation sets D of the same
size. For each simulated training set D, we build the corresponding tree µ̂D with tree depth
being equal to 5 and we estimate its generalization error on a validation set D. Also, we gener-
ate bootstrap samples D∗1,D∗2, . . . of D and we produce the corresponding trees µ̂D∗1 , µ̂D∗2 , . . .
with tree depth being equal to 5. We estimate their generalization errors on a validation set
D, together with the generalization errors of the corresponding bagging models. Note that in
this example, we use the R package rpart to build the different trees described above.

Figure 3.1 displays estimates of the expected generalization errors for µ̂D, µ̂D∗b = µ̂D,Θb
and

µ̂bag
D,Θ for B = 1, 2, . . . , 10 obtained by Monte-Carlo simulations. As expected, we notice that

ÊD,Θ
[
Err

(
µ̂bag
D,Θ

)]
≤ ÊD,Θb

[Err (µ̂D,Θb
)] .

For B ≥ 2, bagging trees outperforms individual sample trees. Also, we note that

ÊD [Err (µ̂D)] ≤ ÊD,Θb
[Err (µ̂D,Θb

)] ,

showing that the restriction imposed by the reduced sample D∗b does not allow to build trees
as predictive as trees built on the entire training set D. Finally, from B = 4, we note that

ÊD,Θ
[
Err

(
µ̂bag
D,Θ

)]
≤ ÊD [Err (µ̂D)] ,

meaning that for B ≥ 4, bagging trees also outperforms single trees built on the entire training
set.
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Figure 3.1: ÊD,Θ
[
Err

(
µ̂bag
D,Θ

)]
with respect to the number of trees B, together with

ÊD,Θb
[Err (µ̂D,Θb

)] (dotted line) and ÊD [Err (µ̂D)] (solid line).
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Chapter 4

Conclusion

Two main drawbacks of regression trees are that they produce piece-wise constant estimates
and that they are rather unstable under a small change in the observations of the training set.
The construction of an ensemble of trees produces more stable and smoothed estimates under
averaging.
Bagging is a technique used for reducing the variance of an estimate. Typically, it works well
for high variance and low-bias procedures, such as regression trees.

In this note, we demonstrate and illustrate two elements:

• The expected generalization error of bagging trees is smaller than the expected general-
ization error of an individual estimate that constitutes the ensemble;

• The expected generalization error of the best regression tree fitted on the entire training
set is smaller than the expected generalization error of an individual estimate constituting
the ensemble.

Furthermore, we also illustrate by means of an example that bagging trees performs better
than the best single tree built on the entire training set after a certain number of trees in the
ensemble. Note that we cannot demonstrate that the estimate µ̂bag

D,Θ(x) performs always better
than µ̂D(x) in the sense of the expected generalization error.
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