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A B S  T R A C T

This paper proposes a new approach to risk classification based on Generalized Gaussian 
Process Regression (GGPR). The response under consideration obeys a distribution 
belonging to the Exponential Dispersion (ED) family. It typically corresponds to a claim 
count or a claim severity in the context of insurance studies. GGPR is a supervised machine 
learning method with Bayesian flavor. Individual random effects obeying a multivariate 
Normal distribution are connected with the help of their covariance matrix built from a so-
called kernel function. The latter enforces smoothness, borrowing information from similar 
risk profiles. Bayesian Generalized Linear Models (GLMs) and Generalized Additive 
Models (GAMs) are recovered as special cases, assuming a highly-structured prior 
covariance matrix. Compared to the existing literature, this paper innovates to account for 
the specificity of data entering insurance studies. First, proper risk exposures are included 
in model formulation and development. Second, parameters are estimated by minimizing 
deviance instead of an approximated log-likelihood. Third, categorical features that are 
often encountered in insurance data bases are coded with the help of an embedding 
method based on Burt matrices. Fourth, K-means clustering is used to reduce the 
dimension of the problem and create model points within large insurance portfolios. 
Numerical illustrations performed on publicly available insurance data sets illustrate the 
relevance of the GGPR approach to risk classification. Benchmarked against the classical 
GLM, the performances of GGPR turn out to be excellent given its reduced number of 
parameters. This suggests that GGPR nicely enriches the actuarial toolkit by providing 
preliminary predictions that can then be structured with additive scores like those entering 
GLMs and GAMs.

Keywords: Exponential Dispersion family, Mixed models, Risk classification, 
Categorical embedding, Burt distance, Model points.



1 Introduction and motivation

Bayesian ideas and techniques entered the actuarial toolkit in the late 1960s with the pio-
neering works by Bühlmann and Straub devoted to empirical Bayes credibility techniques;
see e.g. Makov (2002) for a review. Boskov and Verrall (1994) demonstrated the interest of
latent variables to smooth spatial e�ects in motor insurance, resorting to multivariate Nor-
mal prior distribution with a spatially structured covariance matrix. Dimakos and Rattalma
(2002) extended this idea by proposing a Bayesian version of the Generalized Linear Model
(GLM) approach to insurance risk classi�cation. Denuit and Lang (2004) further extended
this approach to Generalized Additive Models (GAMs) under the Bayesian structured addi-
tive regression setting. We refer to Denuit and Lang (2004) and Klein et al. (2014) for more
information and for insurance case studies.

However, the Bayesian structured additive regression approach to insurance pricing is
in essence parametric: the score is structured in an additive way, resulting in a covariance
matrix with di�erent blocks where smoothness is induced for continuous and spatial features.
This is in contrast with the Generalized Gaussian Process Regression (GGPR) proposed by
Chan and Dong (2011) where only similarity between risk pro�les matters. GGPR applies
to response obeying a distribution in the Exponential Dispersion (ED) family, exactly as
with GLMs and GAMs. It is a non-parametric kernel-based machine learning approach with
Bayesian �avor. The GGPR approach complements Bayesian structured additive regression
by allowing the actuary to derive a preliminary risk assessment solely based on the similarity
between risk pro�les in the portfolio. Approximate inference is generally needed because
the Gaussian prior and the ED distribution of the response are not conjugated. This is
performed with the help of Laplace approximation exhibiting good performances on large
data sets.

The covariance matrix entering the Gaussian prior in GGPR is obtained from a so-called
kernel. The latter is a symmetric positive de�nite function which encodes the degree of
similarity between any two vectors of features. The idea is that similarity is strong when
they are close in the feature space and weak when they are far away from each other. Kernel
functions play a central role in GGPR and hyper-parameters entering kernels need to be
selected with great care.

This paper introduces GGPR to the actuarial community and adapts this machine learn-
ing tool to the speci�city of insurance studies. From a methodological point of view, the
contributions of this paper are as follows:

1. Compared to Chan and Dong (2011), GGPR is adapted to account for contracts with
di�erent exposures (duration for claim counts or claim numbers for severities, for in-
stance). This is important for actuarial applications where exposures often play a
major role.

2. Furthermore, instead of using an approximation of the log-likelihood to �t the GGPR
model, we minimize the exact deviance which is the standard goodness-of-�t measure
for actuarial models.

3. Also, classical GGPRs cannot directly deal with categorical features. This is because
covariance kernels require each feature to be associated with a distance metric while cat-
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egorical variables by de�nition lack such measures. This issue must be addressed since
categorical features generally represent a large fraction of the information recorded in
insurance data bases. In this paper, we propose an embedding technique based on a
contingency table. Categorical features are included in the analysis by using Burt's
distance to assess proximity, following Hainaut (2019) and Jamotton et al. (2024).
This method is totally transparent and founded on a solid theoretical background.
It o�ers an alternative to neural networks with categorical embedding layers where
low-dimensional features extracted from the neural network translate categorical in-
formation into numerical representations. See, e.g., Shi and Shi (2023), Avanzi et al.
(2024), Carlin and Benjamini (2025), and Wang et al. (2025).

4. Our last contribution concerns the analysis of large data sets. One limitation of GG-
PRs is the computation complexity for a large sample size. Due to computational
constraints, GGPR does not scale well with large data sets like insurance databases
which often range in the hundreds of thousands of records. Various methods, such as
sparse approximations and inducing points, have been proposed to address this issue,
but they often involve trade-o�s between accuracy and complexity. In this paper, we
use a reduction dimension based on a K-means clustering algorithm. The latter con-
verts the initial data set into a limited number of �model points� which may be seen
as standard dominant risk pro�les in the portfolio. This approach can be seen as a
pragmatic actuarial counterpart to Nearest Neighbor Gaussian Process (NNGP) us-
ing conditional independence given information from neighboring points for large data
sets, resulting in sparse precision matrices.

Numerical illustrations based on two publicly available insurance data sets demonstrate
the relevance of the proposed approach in the analysis of insurance claim frequencies and
severities compared to standard GLM methods.

The outline of the paper is as follows. Section 2 recaps the GGPR approach to responses
obeying a distribution in the ED family, allowing for di�erent risk exposures. Section 3
discusses the calibration of the parameters entering kernel functions by minimizing the de-
viance. Section 4 develops an embedding method for categorical features, compatible with
GGPR. Section 5 proposes a solution for managing large data sets based on a batch K-means
algorithm. Section 6 applies the proposed approach to a couple of publicly available insur-
ance data sets. The �rst one concerns motor third-party liability insurance in France, while
the second one involves motorcycle insurance in Sweden. The �nal Section 7 summarizes
the main �ndings of the paper and discusses remaining issues. The proofs of the technical
results as well as supplementary material are gathered in appendix.

2 Generalized Gaussian process regression

2.1 Responses and key ratios

In risk classi�cation studies, actuaries generally aim to estimate expected claim frequencies
and severities in order to derive the amount of pure premium according to risk pro�le. The
latter is summarized in a vector of features representing the information available to the

2



insurer. Sometimes, the probability of an event is the quantity of interest, like the no-claim
probability for instance. Every insurance study must account for a proper exposure to risk
re�ecting the �volume� of the risk (like coverage duration, for instance).

The available information is gathered in a vector x ∈ X ⊂ Rm of features x1, x2, . . . , xm.
These features are used to explain the behavior of a random continuous or discrete response
R accounting for the corresponding risk exposure denoted by ω. For instance, R can be the
total amount of claims, the total number of claims or of event occurrences (like defaults) for
a group of ω insurance policies with common features x.

Following Ohlsson and Johansson (2010), let us de�ne the key ratio Y as the response
R divided by the corresponding exposure ω, that is, Y = R

ω
. The domain of Y is denoted

as Y ⊂ R. If R and Y are continuous random variables then their respective probability
density functions pR(r |x) and p(y |x) are related by p(y |x) = ωpR(ωy |x). If R and Y
are discrete random variables then their respective probability mass functions pR(r |x) and
p(y |x) satisfy p(y |x) = pR(ωy |x).

Throughout this paper, we assume that the distribution of Y belongs to the Exponential
Dispersion (ED) family of distributions. This means that the probability density or mass
function of Y is of the form

p (y |x) = exp

{
y θ(x)− γ (θ(x))

ϕ/ω
+ c(y, ϕ, ω)

}
, y ∈ Y , (2.1)

where the canonical parameter is a function θ(x) : X → R of the available features and
where ϕ ∈ R+ is a dispersion parameter. The function γ(·) in (2.1) is C2 and admits an
inverse second-order derivative whereas θ(x) does not enter the normalizing function c(·).
Table 2.1 summarizes the most useful distributions of key ratios for actuarial purposes. The
corresponding functions θ(·), γ(·) and parameter ϕ entering representation (2.1) are provided
in Table 2.2. We refer the reader e.g. to Ohlsson and Johansson (2010), Denuit et al. (2019)
or Wüthrich and Merz (2023) for a textbook treatment of the ED distributions and their
applications to insurance.

Response, R Key ratio, Y = R/ω p (y |x)
Sum of ω Normal Y is Normal, √

ω

σ
√
2π
e−

ω
2 (

y−µ(x)
σ )

2

claim sizes N (ωµ(x), ωσ2) N (µ(x), σ
2

ω
)

Sum of ω Gamma Y is Gamma, (ωβ(x))ωα

Γ(ωα)
yωα−1e−ωβ(x)y

claim sizes G (ωα, β(x)) G (ωα, ωβ(x))
Sum of ω Inverse Gaussian Y is Inverse Gaussian, √

αω
2πy3

e
−αω(y−µ(x))2

2yµ(x)2

claim sizes IG (ωµ(x), ω2α) IG (µ(x), ωα)
Sum of ω Poisson ωY is Poisson,

e−ωλ(x) (ωλ(x))
ωy

(ωy)!claim counts P (λ(x)ω) P (λ(x)ω)
Sum of ω Bernoulli event ωY is Binomial,

(
ω
ωy

)
p(x)ωy (1− p(x))ω(1−y)

occurrences B (ω, p(x)) B (ω, p(x))

Table 2.1: Most common statistical distributions used for actuarial analysis.
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Key ratio, Y = R/ω θ(x) ϕ γ(z) E (Y ) V (Y ) v(z)

N (µ(x), σ
2

ω
) µ(x) σ2 z2/2 µ(x) σ2

ω
1

G (ωα, ωβ(x)) −β(x)
α

1
α

− ln (−z) α
β(x)

α
ωβ(x)2

z2

IG (µ(x), ωα) − 1
2µ(x)2

1
α −

√
−2z µ(x) µ(x)3

ωα
z3

P (λ(x)ω) lnλ(x) 1 ez λ(x) λ(x)
ω

z
B (ω, p(x)) ln p(x)

1−p(x)
1 ln (1 + ez) p(x) p(x)(1−p(x))

ω
z(1− z)

Table 2.2: Reformulation of distributions in Table 2.1 as ED distributions with corresponding
�rst moments and variance functions.

2.2 Mean-variance structure

For a given risk pro�le x, the conditional mean and variance of Y are respectively given by

µ(x) = E(Y |x) = γ′ (θ(x)) and σ2(x) = V(Y |x) = ϕ

ω
γ′′ (θ(x)) .

We deduce that θ(x) is related to µ(x) by

θ(x) = γ′−1 (µ(x)) ,

while σ2(x) depends on µ(x) through the variance function v(.):

σ2(x) =
ϕ

ω
v (µ(x)) where v (·) = γ

′′
(
γ

′−1(·)
)
.

The variance functions of main ED distributions are provided in Table 2.2.

2.3 Link function

With Generalized Linear Models (GLMs), the conditional expectation µ(x) of Y is related
to a linear combination of features β⊤x through a monotonic link function selected by the
analyst. The link function is henceforth denoted as l(.) and the GLM regression speci�cation
is as follows:

l (µ(x)) = β⊤x , (2.2)

where β ∈ Rm is a vector of regression coe�cients to be estimated from claim data. GAMs
replace the linear combination β⊤x in (2.2) with a sum of smooth functions of continuous
features, to be estimated from claim data.

If the link function is such that l (µ(x)) = θ(x) then the link function is called canonical.
Canonical link functions are given by l(·) = γ′−1(·). Table 2.3 lists the canonical link func-
tions for distributions in Table 2.1. In certain circumstances, using a canonical link function
simpli�es developments. In practice, the canonical link is used by actuaries for Normal,
Poisson, and Binomial responses whereas the power link is replaced by the logarithmic one
for Gamma and Inverse Gaussian responses. This choice is made for two reasons. Firstly,
with the (negative) power link function, we can generate a negative expected value for some
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combinations of features. Secondly, the power link introduces a singularity in the Gaussian
process predictor.

Link function l(µ) = γ′−1(µ) Canonical link for

Identity µ Normal
Power −µ−1 Gamma

−1
2
µ−2 Inv. Gaussian

Log lnµ Poisson
Logit ln µ

1−µ
Binomial

Table 2.3: Canonical link functions.

2.4 GGPR model

In the framework of GGPR, we consider a noised version of (2.2). More precisely, we assume
that

l (µ(x)) = g(x) + ϵ , (2.3)

where ϵ ∼ N (0, σ∗2) and g(x) : X → R is a Gaussian process. These two components are
assumed to be independent and the responses are assumed to be conditionally independent,
given the random e�ects in (2.3). From an actuarial point of view, the random e�ect ϵ
captures residual heterogeneity and opens the door to credibility adjustments. In following
developments, we will see that σ∗2 is an hyperparameter of shrinkage tuning the numerical
robustness of the GGPR. Notice that Rasmussen and Williaws (2006) have not allowed for
a shrinkage parameter for classi�cation in Binomial and Multinomial models.

A Gaussian process is a collection {g(x) , x ∈ X} such that for any n ∈ N and any
x1, . . . ,xn ∈ X , the random vector (g(x1), . . . , g(xn)) obeys a joint multivariate Gaussian
distribution. Without loss of generality, the mean vector is set to zero and the covariance
matrix is de�ned by a kernel function k(x,x′) as

C (g(x), g(x′)) = k(x,x
′
) for (x,x

′
) ∈ X × X .

The kernel k(x,x
′
) controls the correlation between the risk pro�les x and x

′
, being large if

these pro�les are similar. A necessary and su�cient condition for the function k : X×X → R
to be a valid kernel is that the n × n matrix of k(X,X) = (k(xi,xj))i,j=1,...,n is positive

semi-de�nite for all possible x1, . . . ,xn ∈ X . This means that c⊤k(X,X)c ≥ 0 holds for
any c ∈ Rn where X =

(
x⊤
i

)
i=1,...,n

.

2.5 Kernel functions

The kernel function is an important ingredient of the GGPR method. This is because its
choice dictates the structure of the covariance matrix of the Gaussian latent process and
thus the way to assess proximity between risk pro�les. Kernels are sometimes referred to as
similarity functions because they measure how similar pairs of risk pro�les are to each other.

Let ∥·∥2 denote the Euclidean distance. Table 2.4 presents the kernels most often encoun-
tered in the literature, referred to as radial basis function (RBF), rational quadratic (RQ),
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Matern 3/2 (M32), Matern 5/2 (M52). These kernels are used in the numerical illustrations
proposed in this paper.

The RBF kernel is often used to model covariance function for Gaussian processes. It
enforces smoothness, with similarity between nearby risk pro�les rapidly decaying as the
Euclidean distance between them increases. RBF kernels are commonly used in regression
and classi�cation tasks where the relationship between the features and the prediction is
expected to be non-linear and smooth. The RQ kernel is another popular choice for capturing
non-linear relationships. It computes how similar two risk pro�les are by raising the Euclidan
distance to some power. The class of Matern kernels generalizes RBF with an additional
parameter controlling the smoothness of the resulting function. Their name refers to the
statistician Bertil Matérn who studied the spatial organization of forests and proposed several
covariance functions which turned out to be useful in many applications beyond forestry.
Table 2.4 considers two particular Matern kernels whose abbreviations refer to the particular
value of the parameters.

Compared to GLM models which often involve many regression coe�cients βj to be
estimated from claim data, GGPR has thus very few parameters (two or three for the kernels
listed in Table 2.4) as it mainly relies on the similarities, measured by distance between
policies, for estimating key ratios. Notice that kernels can be combined by multiplication to
customize the covariance structure.

Kernel k(x,x′) Hyper-parameter
RBF σ2 exp

(
−∥x−x′∥2

2φ2

)
Θ = {σ, φ ∈ R+}

RQ σ2
(
1 +

∥x−x′∥22
2 dφ2

)−d

Θ = {σ, φ, d ∈ R+}

M32 σ2
(
1 +

√
3∥x−x′∥2

ρ

)
exp

(
−

√
3∥x−x′∥2

ρ

)
Θ = {σ, φ ∈ R+}

M52 σ2
(
1 +

√
5∥x−x′∥2

ρ
+

5∥x−x′∥22
3ρ2

)
exp

(
−

√
5∥x−x′∥2

ρ

)
Θ = {σ, φ ∈ R+}

Table 2.4: Common kernels and their hyper-parameters gathered in the vector Θ.

2.6 Laplace approximation

We consider a sample set D made of individual observations (xi, yi) for i = 1, ...n. We adopt
the following notations: y = (yi)i=1,...,n , X =

(
x⊤
i

)
i=1,...,n

, D = (X,y), gi = g(xi) + ϵi and

g = (gi)i=1,...,n. From a Bayesian perspective, we encode our belief that instances of l (µ(x))
are drawn from a Gaussian process g with zero mean and covariance function k(x,x′), prior
to taking observations into account. The goal is then to derive the posterior, or predictive
distribution.

In practice, g is not directly observed. Following the approach of Rasmussen andWilliams
(2006), we use Laplace approximation to approximate the posterior distribution of g given
D. Laplace approximation is often the computationally most e�cient method. It possesses
attractive asymptotic properties making it accurate for large sample sizes n as those encoun-
tered in insurance studies. We refer the reader to Zilber and Katzfuss (2021) and Kündig
and Sigrist (2024) for more details and alternative approaches.
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Laplace approximation consists in approximating the conditional probability density
function p (g |D) of g given D by q (g |D) ∼ N (ĝ,Σg), where the n-dimensional mean vector
ĝ and the n× n covariance matrix Σg are such that

ĝ = argmax
g

p (g | D) and Σ−1
g = −∇∇ ln p (g | D)|g=ĝ

with ∇ denoting the gradient operator so that ∇∇ corresponds to the Hessian matrix.
As p (g | D) ∝ p (y | g) p (g |X), where �∝� means �is proportional to�, the mean vector

ĝ is such that

ĝ = argmax
g

(
ln p (y | g) + ln p (g |X)

)
.

According to model speci�cation (2.3), G ∼ N (0, C(X,X)) where C(X,X) = σ∗2In +
k(X,X) is a (shrinked) Gram matrix. Hence,

ĝ = argmax
g

ψ(g) where ψ(g) =
n∑

i=1

ln p (yi | gi)−
1

2
g⊤C(X,X)−1g . (2.4)

2.7 Newton-Raphson algorithm

We solve the optimization problem (2.4) numerically using a Newton-Raphson algorithm.
The next two results provide the gradient vector and Hessian matrix of ψ(·) required for
implementing this method and for calculating Σg.

2.7.1 Canonical link functions

Let us �rst consider GGPR models with canonical link functions. The proof of the next
result is given in Appendix A.

Proposition 2.1. For the canonical link function l(·) = γ′−1(·), the gradient of ψ(g) is equal
to

∇ψ(g) =
ω

ϕ
⊙ (y − γ′ (g))− C(X,X)−1g, (2.5)

where ⊙ is the element-wise, or Hadamard product. The Hessian is equal to

∇∇ψ(g) = −H(g)− C(X,X)−1 , (2.6)

where H(g) is the n× n diagonal matrix de�ned by

H(g) = diag

(
ω

ϕ
⊙ γ′′ (g)

)
. (2.7)
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2.7.2 Log-link function

As previously discussed, the canonical link function is mainly used in practice for the Nor-
mal, Poisson and Binomial distributions. For Gamma or Inverse Gaussian distributions,
actuaries generally use a logarithmic link instead of the canonical power link function. This
ensures that the conditional expectation µ(x) remains positive, whatever the combination
of features. In the Binomial case, using a log-link function may result in µ(x) higher than
one. Nevertheless, if p(x) are small, this link may still provide the actuary with satisfactory
results. An alternative consists to cap µ(x) to 1.

The next result provides the gradient and Hessian of ψ(·) for the logarithmic link, widely
used in practice. Its proof is provided in Appendix B.

Proposition 2.2. For the log-link function l(·) = ln(·), the gradient of ψ(g) is equal to

∇ψ(g) =
ω

ϕ
⊙

(
y ⊙ eg − e2g

γ′′ (γ′−1 (eg))

)
− C(X,X)−1g, (2.8)

where the division in the �rst term of (2.8) is applied component-wise. The Hessian is given
by (2.6) where H(g) is the n× n diagonal matrix de�ned by

H(g) = diag

(
ω

ϕ
⊙

(
(y ⊙ e2g − e3g)⊙ γ′′′ (γ′−1 (eg))

(γ′′ (γ′−1 (eg)))3
− y ⊙ eg − 2e2g

γ′′ (γ′−1 (eg))

))
. (2.9)

The gradient ∇ψ(g) and H(g) in Propositions 2.1- 2.2 depend on the �rst-, second- and
third-order derivatives of the function γ(·). These derivatives are listed in Table 2.5 for the
Normal, Gamma, Inverse Gaussian, Poisson and Binomial distributions.

Y γ(z) γ′(z) γ′′(z) γ′′′(z)

N (µ(x), σ
2

ω
) z2/2 z 1 0

G (ωα, ωβ(x)) − ln (−z) −1
z

1
z2

− 2
z3

IG (µ(x), ωα) −
√
−2z (−2z)−

1
2 (−2z)−

3
2 3 (−2z)−

5
2

P (λ(x)ω) ez ez ez ez

B (ω, p(x)) ln (1 + ez) ez

1+ez
ez

1+ez
−
(

ez

1+ez

)2 (
ez

1+ez
−
(

ez

1+ez

)2)
×
(
1− 2 ez

1+ez

)
Y γ′−1(z) γ′′ (γ′−1 (eg)) γ′′′ (γ′−1 (eg))

N (µ(x), σ
2

ω
) z 1 0

G (ωα, ωβ(x)) −z−1 e2g 2e3g

IG (µ(x), ωα) −1
2
z−2 e3g 3e5g

P (λ(x)ω) ln z eg eg

B (ω, p(x)) ln z
1−z

eg − e2g (eg − e2g) (1− 2eg)

Table 2.5: First-, second- and third-order derivatives of the function γ(.) involved in ∇ψ(g)
and H(g).
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2.8 Fitting algorithm

In applications to insurance pricing, the Poisson distribution is generally used when dealing
with claim frequency while the Gamma and Inverse Gaussian distributions are preferred for
claim severities. In all case, actuaries conduct the analysis with log-link function.

2.8.1 Poisson distribution with canonical log-link for claim frequencies

In the Poisson case, the gradient (2.8) and the matrix (2.7)-(2.9) take the following simple
form {

∇ψ(g) = ω ⊙ (y − eg)− C(X,X)−1g ,

H(g) = diag (ω ⊙ eg) .

2.8.2 Gamma distribution with log-link for claim severities

In the Gamma model with log-link, ∇ψ and H depend on the dispersion parameter ϕ and
on the ratio of responses y on eg:{

∇ψ(g) = ω
ϕ
⊙
(
y−eg

eg

)
− C(X,X)−1g ,

H(g) = diag
(

ω
ϕ
⊙ y

eg

)
.

2.8.3 Inverse Gaussian distribution with log-link for claim severities

In the Inverse Gaussian model with log-link, ∇ψ and H depend on the square of e2g and on
the dispersion parameter ϕ :{

∇ψ(g) = ω
ϕ
⊙
(
y−eg

e2g

)
− C(X,X)−1g ,

H(g) = diag
(

ω
ϕ
⊙
(
2y−eg

e2g

))
.

2.8.4 Iterations

The mean vector ĝ in q (g |D) is such that the gradient of ψ(g) is null. It does not admit any
analytical expression but a few Newton-Raphson iterations are generally enough to achieve
convergence. During the jth-iteration, we update the current estimate ĝ(j) of ĝ as follows:

ĝ(j) = ĝ(j−1) −
(
∇∇ψ

(
ĝ(j−1), ϕ̂(j−1)

))−1

∇ψ
(
ĝ(j−1)

)
(2.10)

= ĝ(j−1) +
(
H

(
ĝ(j−1), ϕ̂(j−1)

)
+ C(X,X)−1

)−1

∇ψ
(
ĝ(j−1), ϕ̂(j−1)

)
,

where ∇ψ (·) and H(·) are provided in Propositions 2.1- 2.2, depending upon the chosen link
function.
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2.8.5 Estimation of the dispersion parameter

In the Gamma and Inverse Gaussian cases, the dispersion parameter must also be estimated.
The dispersion coe�cient at each iteration (2.10) is generally estimated using the �tted values

ŷ
(j)
i as follows:

ϕ̂(j) =
1

n− dof

n∑
i=1

ωi

(
yi − ŷ

(j)
i

)2

v
(
ŷ
(j)
i

) ,

where v(·) is the variance function in Table 2.2, dof is the number of degrees of freedom of

the model (i.e. the number of hyper-parameters de�ning the kernel) and ŷ
(j)
i is the estimated

mean of the key ratio. Since obtaining ŷ
(j)
i is computationally intensive (see Proposition 2.3

below for more details), we instead use an approximation based on estimated ĝ(j):

ϕ̂(j) =
1

n− dof

n∑
i=1

ωi

(
yi − l−1

(
ĝ(j)

))2

v
(
l−1

(
ĝ(j)

)) .

As shown in numerical illustrations, this approximation is su�cient to achieve excellent
performances. We denote the average response by ȳ = 1

n

∑n
i=1 yi and use if for initializing

the Newton-Raphson algorithm with ĝ(0) = l(ȳ) and

ϕ̂(0) =
1

n− dof

n∑
i=1

ωi
(yi − ȳ)2

v (ȳ)
.

2.9 Resulting pure premium

2.9.1 New risk pro�le

If we see g as the realization of a random vector G and if we denote as G′ = g(x′) the latent
component for a new risk pro�le x′ /∈ X, we have by construction that(

G′

G

)
∼ N

(
0 ;

(
k(x′,x′) k(X,x′)
k(X,x′)⊤ σ∗2In + k(X,X)

))
. (2.11)

Using the standard properties of the multivariate Normal distribution, the conditional prob-
ability density function p (g′ | D, g,x′) of G′ given D, g, and x′ is given by

p (g′ | D, g,x′) ∼ N
(
µg (x

′|D, g) ; σ2
g (x

′|D, g)
)
,

where

µg (x
′|D, g) = E (g(x′)|D, g,x′)

= k(x′,X)⊤
(
σ∗2In + k(X,X)

)−1
g (2.12)

and

σ2
g (x

′|D, g) = V (g(x′)|D, g,x′)

= k(x′,x′)− k(X,x′)⊤
(
σ∗2In + k(X,X)

)−1
k(X,x′) . (2.13)
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2.9.2 Predictions

The Hessian of ln p (g | D) being equal to the Hesssian of ψ(g), the covariance matrix of
q (g |D) is given by

Σg =
(
−∇∇ ln p (g | D)|g=ĝ

)−1

(2.14)

=
(
−∇∇ψ(g)|g=ĝ

)−1

=
(
H(ĝ) + C(X,X)−1

)−1
.

Knowing the mean vector and covariance matrix of the approximation q (g |D) ∼ N (ĝ,Σg)
to p (g |D), we can �nd an estimator of the pure premium as follows.

Proposition 2.3. Let us consider an insurance policy with features x′, not included in the
training set. Let us de�ne

µq (x
′|D) = k(x′,X)⊤C(X,X)−1ĝ (2.15)

and

σ2
q (x

′|D) = k(x′,x′)− k(X,x′)⊤
(
C(X,X) +H(ĝ)−1

)−1
k(X,x′) . (2.16)

For the Normal distribution with canonical link l(µ) = µ, the �tted value ŷ′ of the key ratio
Y ′ is equal to

ŷ′ = µq (x
′|D) . (2.17)

For the Gamma, Inverse Gaussian, Poisson, and Binomial distributions with log-link func-
tion l(µ) = ln(µ), the �tted value ŷ′ is given by

ŷ′ = exp

(
µq (x

′|D) +
1

2
σ2
q (x

′|D)

)
. (2.18)

In general, the �tted value ŷ′ is computed numerically by approximating the integral

ŷ′ =

∫
l−1 (g′) q (g′ | D,x′) dg′ . (2.19)

The proof of Proposition 2.3 is given in Appendix C.

3 Selection of hyper-parameters

Despite their low number, �tting the hyper-parameters entering kernel functions may be a
challenging task. Rasmussen and Williams (2006) achieve this by maximization of an ap-
proximated log-likelihood, again based on a limited Taylor expansion of ψ(·). This approach
avoids the time-consuming calculation of the �tted values ŷ by numerical approximation of
the integral (2.19). As actuarial applications mainly rely on Gamma, Inverse Gaussian, and
Poisson distributions with log-link, we can e�ciently compute ŷ from (2.18) and instead �t
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hyper-parameters by maximizing the deviance. Since deviance is the criterion used by actu-
aries for comparing and estimating models, we believe that this new approach is preferable
for insurance studies.

Let us brie�y recall the concept of deviance. Let LL (ŷi) be the log-likelihood of the ith

insurance contract key ratios, as a function of the �tted value ŷi. We can get a perfect �t
by setting all ŷi = yi. This con�guration is called the saturated, or full model. This model
is trivial and of no practical interest but since it perfectly �ts data, its log-likelihood is the
best one that can be achieved with the ED model under consideration. The scaled deviance
D∗ is de�ned as the likelihood ratio test statistic of the model under consideration against
the saturated model:

D∗(yi, ŷi) = 2 (LL(yi)− LL(ŷi)) .

As ŷi is an estimate of E (Yi) and E (Yi) = γ′ (θ(xi)) for ED distributions, we have θ(xi) ≈
γ′−1 (ŷi). Then, according to the de�nition of ED distributions, the scaled deviance is equal
to

D∗(yi, ŷi) = 2
ωi

ϕ

(
yiγ

′−1 (yi)− γ
(
γ

′−1 (yi)
)
− yiγ

′−1 (ŷi) + γ
(
γ

′−1 (ŷi)
))

.

By multiplying this expression by ϕ, we get the unscaled deviance D(yi, ŷi) = ϕD∗(yi, ŷi).
The unscaled deviance measures the goodness of �t for estimating kernel hyper-parameters.
Table 3.1 presents the unscaled deviance associated to the Normal, Gamma, Inverse Gaus-
sian, Poisson and Binomial models. The total deviance D(D) is simply the sum of individual
unscaled deviance, that is, D(D) =

∑n
i=1D(yi, ŷi).

Unscaled deviance D(yi, ŷi)

Normal ωi (yi − ŷi)
2

Gamma

{
2ωi

(
yi
ŷi
− 1− ln

(
yi
ŷi

))
yi > 0

0 yi = 0

Inverse Gaussian ωi
(yi−ŷi)

2

yiŷ2i
yi > 0

Poisson

{
2ωi (yi ln yi − yi ln ŷi − yi + ŷi) yi > 0

2ωiŷi yi = 0

Binomial


2ωi

(
yi ln

(
yi
ŷi

)
+ (1− yi) ln

(
1−yi
1−ŷi

))
yi ∈ (0, 1)

−2ωi ln (1− ŷi) yi = 0

−2ωi ln (ŷi) yi = 1

Table 3.1: Deviance statistics for Normal, Gamma, Inverse Gaussian, Poisson and Binomial
distributions.

4 Embedding of categorical features

Until now, we have assumed that the features of an insurance contract are contained in a
numeric vector x belonging to a subset X ∈ Rm. In this case, the Euclidean distance between
two policies with respective risk pro�les x and x′ entering the kernels listed in Table 2.4 is
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well adapted to quantify their similarity and the GGPR can be used without pre-processing
of data. In practice, the features of insurance policies are mostly encoded as categorical
information and we must therefore convert the categorical features into relevant vectors of
Rm, to which we can apply the Euclidian distance. In this paper, we use Burt's distance as
introduced in Hainaut (2019) and Jamotton et al. (2024).

Let us consider a portfolio for which features are encoded into p categorical variables
which have mk binary modalities for k = 1, ..., p. By binary, we mean that the modality j of
the kth variable is identi�ed by an indicator variable equal to zero or one. The total number
of modalities is m =

∑p
k=1mk. In the following developments, we enumerate modalities from

1 to m. The information about the portfolio can then be summarized by an n ×m matrix
D = (di,j)i=1...n,j=1...m. If the i

th policy presents the jth modality then di,j = 1 and di,j = 0
otherwise. The matrix D is referred to as the disjunctive table.

Example 4.1. Assume that risk classi�cation in motor insurance is based on driver's gender
(M=male or F=Female) and residence area (U=urban, S=suburban or C=countryside). The
number of variables and modalities are respectively p = 2, m1 = 2, m2 = 3 so that m = 5. If
the �rst and second policyholders are respectively a man living in a city and a woman living
in the countryside, the two �rst lines of the matrix D are given in Table 4.1.

Gender Area

Policy M F U S C
1 1 0 1 0 0
2 0 1 0 0 1
...

...
...

...
...

...

Table 4.1: Example of a disjunctive table for p = 2 categorical features with respectively
m1 = 2 and m2 = 3 modalities.

In order to study the dependence between the modalities, we calculate the numbers
ni,j of individuals sharing modalities i and j, for i, j = 1, ...,m. The m × m matrix B =
(ni,j)i,j=1,...,m is a contingency table, called the Burt matrix. The Burt matrix is computed
from the disjunctive table as follows:

B = D⊤D .

This symmetric matrix is composed of p×p blocks Bk,j for k, j = 1, ..., p. A block Bk,j is the
contingency table that crosses the variables k and j. By construction, the sum of elements
of a block Bk,j is equal to the total number n of policies. The sum of ni,j of the same row i
is equal to

ni,• =
∑

j=1,...,m

ni,j = p ni,i .

The Burt matrix being symmetric, we directly infer that

n•,j =
∑

i=1,...,m

ni,j = p nj,j .
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Blocks Bk,k for k = 1, ..., p are diagonal, whose diagonal entries are the numbers of policies
who respectively present the modalities 1, ...,mk, for the k

th variable.

Example 4.2. Table 4.2 shows the Burt matrix for the matrix D presented in Table 4.1.
Here, n1,1 and n2,2 respectively count the total number of men and women in the portfolio
while n3,3, n4,4 and n5,5 respectively count the number of policyholders living in a urban,
sub-urban or rural environment. We have n1,1 + n2,2 = n and n3,3 + n4,4 + n5,5 = n.

Gender Area
M F U S C

Gender
M n1,1 0 n1,3 n1,4 n1,5

F 0 n2,2 n2,3 n2,4 n2,5

Area
U n3,1 n3,2 n3,3 0 0
S n4,1 n4,2 0 n4,4 0
C n5,1 n5,2 0 0 n5,5

Table 4.2: Burt matrix for the disjunctive Table 4.1.

We de�ne the Chi-Square distance between rows i and i′ of the Burt matrix as follows:

χ2 (i, i′) =
m∑
j=1

n

n•,j

(
ni,j

ni,•
− ni′,j

ni′,•

)2

, i, i′ ∈ {1, ...,m}.

Intuitively, the distance between two modalities is measured by the sum of weighted gaps
between joint frequencies with respect to all modalities. Similarly, the Chi-Square distance
between columns j and j′ of the Burt matrix is de�ned by

χ2 (j, j′) =
m∑
i=1

n

ni,•

(
ni,j

n•,j
− ni,j′

n•,j′

)2

, j, j′ ∈ {1, ...,m}.

As we want to evaluate distances between policies with the Euclidean distance, the ele-
ments of the Burt matrix ni,j are replaced by weighted values nW

i,j de�ned as

nW
i,j =

ni,j√
ni,• n•,j

, i, j = 1, ...,m . (4.1)

Given that ni,• = p ni,i and n•,j = p nj,j, we have that

nW
i,j =

ni,j

p
√
ni,i nj,j

, i, j = 1, ...,m . (4.2)

The distances between rows (i, i′) and columns (j, j′) of the Burt matrix become

χ2 (i, i′) =
m∑
j=1

(
nW
i,j − nW

i′,j

)2
and χ2 (j, j′) =

m∑
i=1

(
nW
i,j − nW

i,j′

)2
.
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IfC is the diagonal matrixC = diag
(
n
− 1

2
11 , . . . , n

− 1
2

mm

)
then the weighted Burt matrix denoted

as BW is given by

BW =
1

p
CBC .

Figure 1: Illustration of the embedding with the weighted Burt matrix.

The kth modality corresponds to the kth row of BW , which is a vector in Rm. The ith

contract with multiple modalities can then be identi�ed by the center of gravity Di,•B
W /p

of points with coordinates stored in the corresponding rows of the weighted Burt matrix.
This point is illustrated in Figure 1 for the case of three modalities. If each policy is de�ned
by a subset of p =2 modalities, we represent in R3 as the mid point between corresponding
lines of BW . The Burt's distance between the ith and jth policies is then the Euclidean
distance between the two centers of gravity of clouds of features for each policy, that is,

d(xi,xj) =
∥∥Di,•B

W /p−Dj,•B
W /p

∥∥
2
, (4.3)

Instead of using the initial dummy vectors (xi)i=1,...,n, we use as entries x
′
i = Di,•B

W /p for
the GGPR.

5 Managing large data sets

GGPR models involve a square matrix of dimension equal to the number n of records in the
database. This is a serious pitfall for large data sets, such as those used in the insurance sec-
tor. It is indeed usual to work on insurance portfolios with more than one hundred thousands
policies. For such a number of records, inverting the matrix C(X,X) is computationally too
intensive. To address this issue, we aggregate the records into clusters and use the average
of records in each cluster as input for the GGPR. Clusters are built with a batch version of
the K-means algorithm. We will illustrate the e�ciency of this approach in the numerical
examples of the next section.

Let us consider a data set of n numeric records X = {x1, ...xn} where xi ∈ Rm is the
embedding vector of categorical features of the ith contract. The corresponding responses,
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exposures and key ratios are respectively n−vectors, r = {r1, ..., rn}, ω = {ω1, ..., ωn} and
y = {y1, ..., yn} = r

ω
. The K-means algorithm searches for a partition of X into K < n

clusters minimizing the intra-class inertia, which measures the similarity of records inside
each cluster. The average of records in a cluster is called a centroid. The centroids are
m−dimensional vectors cu = (cu1 , . . . , c

u
m) for u = 1, ..., K. If we denote by d(x,x

′
) =

||x−x′||2 the Euclidean distance between x and x
′
, we de�ne the clusters or classes of data

Su for u = 1, ..., K as follows:

Su = {xi|d(xi, cu) ≤ d(xi, cj) for j = 1, ..., K}, u = 1, ..., K . (5.1)

We de�ne the barycentre of Su as the m-dimensional vector bu = 1
|Su|

∑
xi∈Su

xi . The intra-
class inertia Ia is the sum of variances inside clusters, weighted by their size, that is,

Ia =
1

n

K∑
u=1

∑
xi∈Su

d (xi, bu)
2 .

A common criterion for classi�cation consists to look for a partition of X minimizing the
intra-class inertia Ia. Finding the partition that minimizes the intra-class inertia is com-
putationally di�cult (NP-hard). The K-means is an e�cient heuristic procedure using an
iterative re�nement technique converging quickly to a local optimum. The K-means algo-
rithm proceeds by alternating between two steps. In the assignment step at eth iteration,
we associate each observation xi with a cluster Su(e) whose centroid cu(e) has the smallest
distance d(xi, cu(e)). This is intuitively the nearest centroid to each observation. In the
updating step, we calculate the new barycentre bu(e) to be the centroids cu(e+ 1) of obser-
vations in new clusters. The algorithm converges when the assignments no longer change.
At each iteration, we can prove that the intra-class inertia is reduced. Nevertheless, we have
no guarantee that the partition found in this way is a global solution. In practice, we run
this algorithm several times and choose the partition with the smaller intra-class inertia. To
speed up the procedure, we work with small random batches of data. The batch version of
the K-means algorithm is provided in Appendix D.

After the partitioning of X into clusters, we assimilate the centroids to the features,
X ′ = {c1, ..., cK} of a reduced number of K aggregated policies. X

′
may be seen as a data

set of model points, which represent locally dominant pro�les of contracts. The corresponding
key ratios and exposures are stored in K-vectors y

′
= {y′

1, ..., y
′
K} and ω

′
= {ω′

1, ..., ω
′
K} :

y
′

u =

∑
xi∈Su

ri∑
xi∈Su

ωi

, ω
′

u =
∑
xi∈Su

ωi.

The reduced dataset, (X ′,y
′
,ω

′
), serves as input for the GGPR. To conclude this section,

we present in Algorithm 1 all the steps for implementing the GGPR with both embedding
and clustering of a data set with categorical features. The hyper-parameters Θ of the kernel
are estimated by minimizing the unscaled deviance on the training set (e.g. with the Nelder-
Mead algorithm). For large data sets, we consider a random batch of training records with
a lower dimension, for computing the deviance and optimizing Θ
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Algorithm 1 GGPR algorithm with embedding and clustering of data.

Embedding:

Load the data set X of n records with p categorical features (m modalities)
Convert it into a disjunctive table D and calculate the Burt matrix B = D⊤D

Weighted Burt matrix BW = 1
p
CBC where C = diag

(
n
− 1

2
11 ..n

− 1
2

mm

)
Embedding of data: X ′ = DBW /p, dimension n×m

Clustering:

K-means applied to X
′

X ′′ is the K ×m matrix of model points, with key ratios y′′ and exposures ω′′.
Main procedure:

Select a kernel kΘ(., .) with parameters Θ
While Θ is not optimal

Compute C(X ′′,X ′′) = σ∗2In + k(X ′′,X ′′) and C(X ′′,X ′′)−1

Estimate ĝ′′ by Newton-Raphson with (X ′′,y′′,ω′′)
For all x′ ⊂ X ′ (or in a batch), compute

µq (x
′|D) = k(x′,X ′′)⊤C(X ′′,X ′′)−1ĝ′′

σ2
q (x

′|D) = k(x′,X ′′)− k(X ′′,x′)⊤
(
C(X ′′,X ′′) +H(ĝ′′)−1

)−1
k(X ′′,x′)

and estimate the key ratio

ŷ′ = exp

(
µq (x

′|D) +
1

2
σ2
q (x

′|D)

)
Compute the unscaled deviance D(y, ŷ′) and update Θ.

End while

6 Numerical illustrations

This section applies Algorithm 1 on two publicly available data sets with di�erent sizes. The
�rst one concerns motor third-party liability (MTPL) insurance claims. It corresponds to a
large portfolio of an insurance company operating in France. It is included in the R library
CASdatasets contributed by Dutang and Charpentier (2020). The second data set focuses
on motorcycle insurance claim (MCC) from the Swedish company WASA. The number of
policies is smaller compared to French MTPL data.

The implementation is done in Python and we use the library cuda to parallelize matrix
product operations and kernel evaluations. The code is run on a laptop with an Intel Core
Ultra 7 processor, 32 GB of RAM, and an Nvidia RTX 2000 GPU. In this section, we band
all continuous features to make them categorical. This allows us to work with homogeneous
data types to demonstrate the e�ciency of the embedding method proposed in Section 4.
GGPR analysis combining numerical and categorical features is discussed in the �nal section.
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6.1 MTPL database

6.1.1 Available features

This data set is extensively described in Chapter 13 of Wüthrich and Merz (2023). It provides
information about claim frequencies and severities for 678 013 MTPL insurance contracts,
allotted in 5 similar folds of 135 602 policies. We categorize all numerical features and Table
6.1 reports their respective levels after categorization as well as the corresponding numbers
of modalities.

Features Modalities Number

Area A to F 6
Vehicle power [0,20), [20,40),..., [80,100] 8
Vehicle age [0,5), [5,10),...., [20,100] 4
Driver age [18,28), [28,38),..., [88,100] 8

Bonus Malus [50,60), [60,70),...,[120,230] 8
Vehicle Brand B1, B2, .... 11
Vehicule Gas Diesel or Regular 2

Density [0,20), [20, 40),... ,[80,100] 5
Region R11, R21,... 22

Table 6.1: Categorized features and associated levels for MTPL insurance data.

6.1.2 Shrinkage and clustering

The shrinkage parameter σ∗ is set to 0.01 but it could have been set to zero in this particular
example as we do not observe numerical instabilities. It is nevertheless useful to assign
to σ∗ a small but strictly positive value to ensure that the covariance matrix remains well
conditioned at each step of the estimation algorithm. If not, this matrix could become ill
conditioned in the iterations which slows down or even prevents convergence. Specifying a
positive shrinkage parameter σ∗ makes GGPR model calibration more robust.

We run 10 times the K-means algorithm on the whole data set (no batch) and select the
partition with the lowest intra-class inertia.

6.1.3 Claim severities

Let us �rst consider claim severities. The data set contains 24 944 records. We respectively
consider folds 1 to 4 (19 942 claims) as training set and fold 5 (5 002 claims) as validation
set. After converting into dummy features, we have 75 binary explanatory variables. The
GLM is compared to the GGPR with RBF, RQ, M32 and M52 kernels listed in Table 2.4.

Table 6.2 reports the deviances, log-likelihoods and AIC of the Gamma GGPR model
with log-link considering various kernels and numbers of clusters. The analysis of deviances
and log-likelihoods on the training set reveals that the GGPR achieves a better goodness of
�t than the GLM. Regardless of the kernel, increasing the number of clusters reduces the
deviance. The lowest one being attained with a RQ kernel. In terms of AIC, the performance
of the GGPR is remarkable given its low number of parameters (2 or 3). The validation set
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reveals that GGPR slightly over�ts the data since the deviance is higher than with the GLM.
Considering fewer than 600 clusters decreases the deviance on the validation set but raises
it on the training set. For instance, with the RQ kernel and only 150 clusters, the training
deviance moves up to 30 631 while the validation deviance falls to 9 024.

Gamma Training set Validation set
K D(D) log-like. AIC D(D) log-like. AIC Time

RBF 600 31685.09 -196950.53 393905.07 8708.36 -52818.0 105640.0 92.62
800 31576.57 -197387.3 394778.59 9512.13 -55091.54 110187.08 173.26
1000 31302.01 -200318.94 400641.88 10144.66 -58292.22 116588.45 262.27

RQ 600 29272.1 -196186.16 392378.32 10224.85 -59542.11 119090.21 69.82
800 28191.45 -192446.46 384898.92 10665.41 -61569.56 123145.12 125.65
1000 27209.87 -188490.95 376987.89 10364.51 -60633.52 121273.05 199.02

M32 600 29598.39 -196966.1 393936.2 10132.6 -58904.17 117812.34 70.64
800 28615.14 -190815.71 381635.42 10934.76 -62057.93 124119.86 98.21
1000 27616.37 -188580.93 377165.87 10663.19 -61342.81 122689.63 144.28

M52 600 29979.38 -194723.58 389451.17 10777.34 -60628.78 121261.56 60.67
800 28958.18 -188593.13 377190.26 11444.76 -63002.58 126009.15 103.91
1000 27911.23 -187527.1 375058.19 10936.57 -61646.83 123297.67 146.99

GLM n.a. 31689.53 -200943.82 402019.64 8456.44 -52576.03 105284.06 n.a.

Table 6.2: Gamma model with log-link function for MTPL claim severities. Comparison of
deviances, log-likelihoods, AIC of GGPR for various numbers of clusters (K), and GLM.
The column �Time� reports the duration in seconds for optimizing kernel parameters.

Table 6.3 reports the deviances, log-likelihoods and AIC of the Inverse Gaussian GGPR
model with log-link with di�erent kernel functions and various numbers of clusters. Based
on log-likelihoods, the Inverse Gaussian model better �ts data than the Gamma model. The
kernel signi�cantly in�uences the goodness of �t. On the training data set, the M32 kernel
leads to the lowest deviance and highest log-likelihood. Nevertheless, on the validation set,
the best �t is achieved with the RBF and 600 clusters. As it was the case with the Gamma
model, we observe some over�tting that can be mitigated by considering fewer clusters.
For the RQ kernel and K =400, the validation deviance falls to 10.56 whereas the training
deviance slightly climbs to 47.58.
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Inv. Gaus. Training set Validation set
K D(D) log-like. AIC D(D) log-like. AIC Time

RBF 600 47.11 -177631.47 355266.93 10.58 -45399.06 90802.11 83.1216
800 47.11 -179287.8 358579.6 10.87 -46766.85 93537.7 127.6252
1000 47.1 -182014.04 364032.08 11.09 -48183.1 96370.19 145.4711

RQ 600 45.86 -175511.44 351028.88 11.08 -48799.85 97605.7 94.1315
800 45.63 -174582.09 349170.18 11.64 -51121.66 102249.32 157.4251
1000 45.27 -173497.29 347000.58 11.51 -50752.94 101511.89 230.4646

M32 600 46.2 -174116.17 348236.34 11.4 -49753.33 99510.66 61.7404
800 45.96 -173135.31 346274.63 11.98 -51813.65 103631.3 101.1904
1000 45.57 -173076.72 346157.44 11.76 -51338.31 102680.62 140.5164

M52 600 46.56 -173550.09 347104.17 11.68 -50690.08 101384.17 73.8574
800 46.32 -172835.34 345674.68 12.23 -52233.67 104471.33 129.127
1000 45.92 -173004.54 346013.08 11.83 -51259.79 102523.57 159.288

GLM n.a. 46.96 -178563.55 357259.09 10.59 -45703.68 91539.35 n.a.

Table 6.3: Inverse Gaussian model with log-link for MTPL claim severities. Comparison
of deviances, log-likelihoods, AIC of GGPR for various cluster sizes (K), and GLM. The
column �Time� reports the duration in seconds for optimizing kernel parameters.

Figure 2 compares the histograms of estimated mean claim severities (on the log-scale)
computed from GLM and GGPR (with K = 600, RQ kernel and Inverse Gaussian distribu-
tion), on the training and validation sets. Table 6.4 compares the moments and percentiles
of �tted severities. It reveals that the GGPR yields more dispersed predictions than the
GLM for the training set. We also observe that GGPR underestimates the average severity
compared to the GLM which itself falls below the observed average severity. In the latter
case, this is because the log-link is not the canonical link for the Inverse Gaussian distribu-
tion so that global balance does not necessarily hold despite the inclusion of an intercept in
the GLM score. Figure 3 shows QQ-plots of predicted claim severities by GGPR and GLM.
On the training set, GGPR quantiles corresponding to high probabilities are clearly greater
than those of the GLM. This trend is less pronounced on the validation set.

Method Mean Standard Percentiles
deviation 5% 95%

GGPR 2016 1081 1190 3419
Training GLM 2106 843 1328 3850

Data 2233 30857 80 4632

GGPR 1991 854 1201 3350
Validation GLM 2096 872 1331 3855

Data 2180 19886 80 4718

Table 6.4: Mean, standard deviation, 5% and 95% percentiles of expected claim amounts.
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Figure 2: Histogram (20 bins) of observed and predicted claims severities on the training
and validation sets. GGPR predictions are computed with K = 600 clusters and the RQ
kernel.

Figure 3: QQ-plots of GGPR and GLM predictions with K = 600 clusters and the RQ
kernel.

6.1.4 Claim frequencies

Next, we �t a Poisson model with log-link to claim frequencies. We respectively consider
the �rst and second folds (with 135 602 policies in each fold) as the training and validation
sets. We run the K-means algorithm 10 times with batches of 10 000 contracts and select
the partition with the lowest intra-class inertia. The hyper-parameters are estimated by
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minimizing the deviance for a random sample of 10 000 policies from the training set. Table
6.5 reports the deviances, log-likelihoods, and AIC of the Poisson GGPR model. Given the
large number of policies, we allow for more clusters compared to the modeling of severities.
Again, the GGPR outperforms the GLM, even if the gain in log-likelihood or deviance is
less impressive than the one obtained with claim severities. On the training set, the GGPR
slightly underperforms, possibly due to a small over�t on the validation set. However, we
need to recall that GGPR is mainly a non-parametric method with only two or three degrees
of freedom. From this point of view, its capacity for modeling is impressive compared to a
fully parametric method such as the GLM.

Poisson Training set Validation set
K D(D) log-like. AIC D(D) log-like. AIC Time

RBF 3000 32555.46 -21304.78 42613.56 32692.44 -21422.19 42848.38 711.36
4000 32550.19 -21302.15 42608.3 32803.15 -21477.54 42959.09 942.58
5000 32401.7 -21227.9 42459.8 32766.48 -21459.21 42922.42 2288.75

RQ 3000 32506.87 -21280.48 42566.97 32792.73 -21472.33 42950.67 505.46
4000 32182.74 -21118.42 42242.85 32863.72 -21507.83 43021.67 890.25
5000 31812.22 -20933.16 41872.32 32999.2 -21575.57 43157.14 1471.03

M32 3000 32288.88 -21171.49 42346.98 32859.32 -21505.63 43015.26 637.64
4000 32180.93 -21117.51 42239.03 33043.8 -21597.87 43199.74 1420.29
5000 31948.72 -21001.41 42006.82 32969.02 -21560.48 43124.96 2178.37

M52 3000 32371.29 -21212.7 42429.39 32858.09 -21505.02 43014.03 538.43
4000 32281.31 -21167.71 42339.42 33041.4 -21596.67 43197.35 1109.08
5000 32067.1 -21060.6 42125.2 32978.14 -21565.04 43134.08 1727.06

GLM n.a. 32520.5 -21287.3 42706.6 32503.99 -21327.96 42787.93 n.a.

Table 6.5: Poisson model with log-link for MTPL claim frequencies. Comparison of de-
viances, log-likelihoods, AIC of GGPR for various cluster sizes (K), and GLM. The column
�Time� reports the duration for optimizing kernel parameters.

Table 6.6 reports the means, standard deviations and 5%-95% percentiles of expected
claim frequencies computed with the GGPR and GLM (RBF kernel and K =3000). On
both training and validation sets, the Poisson GGPR yields predictions with slightly higher
mean and standard deviation than the GLM. Both models fail to capture the high volatility
of claim numbers. The QQ-plots in Figure 4 reveal that quantiles of GGPR and GLM
predictions are similar for claim frequencies less than 0.60. Notice that the vast majority of
contracts are below this threshold.
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Method Mean Standard Percentiles
deviation 5% 95%

GGPR 0.0887 0.0569 0.0340 0.2002
Training GLM 0.0780 0.0524 0.0335 0.1737

Data 0.1211 2.2772 0.0000 0.0000

GGPR 0.0888 0.0568 0.0341 0.2001
Validation GLM 0.0781 0.0525 0.0336 0.1732

Data 0.1161 1.7955 0.0000 0.0000

Table 6.6: Mean, standard deviation, 5% and 95% percentiles of expected claim frequencies.

Figure 4: QQ plots of GGPR and GLM predictions with K = 3000 clusters and the RBF
kernel.

6.2 MCC data set

6.2.1 Available features

This data set is available on the companion website of the book by Ohlsson and Johansson
(2010). We refer the reader to Chapter 2 of this book for a thorough description. Claim
frequencies and severities are recorded for 62 436 motorcycle insurance contracts over the
period 1994-1998. As explained before, we categorize all numerical variables. Table 6.7 lists
the features after categorization and the number of modalities per feature.
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Features Modalities Number

Gender M , F 2
Area 1 to 7 7

Vehicle power 1 to 7 7
Bonus class 1 to 7 7
Driver age [16,26), [26,36),...., [66,100] 6
Vehicle age [0,5), [5,10), [10,20), [20,100] 4

Table 6.7: Categorized features used as explanatory variables for MCC insurance data.

6.2.2 Shrinkage and clustering

The shrinkage parameter σ∗ is set to 0.01 but we do not observe numerical instabilities with
lower values. We run 10 times the K-means algorithm on the whole data set (no batch) and
select the partition with the lowest intra-class inertia.

6.2.3 Claim severities

First, we consider claim severities. The data set contains 670 claims. The learning and
validation sets respectively contain 536 and 134 claims. We have 33 binary explanatory
variables. Table 6.8 reports goodness-of-�t statistics for the Gamma model with log-link.
On the training set, the GGPR achieves lower deviance with at least 100 clusters. As with
the MTPL data set, increasing the number of clusters reduces the deviance. From an AIC
perspective, the GGPR is more e�cient than the GLM regardless of the tested model, since
it has two or three hyper-parameters. On the validation set, the GGPR deviance is higher
than that of the GLM, indicating a tendency to over�t the training data. The model with
the lowest AIC is the RBF GGPR with only 150 clusters.

Table 6.9 reports goodness-of-�t statistics for the Inverse Gaussian model with log-link.
The log-likelihoods are lower compared to the Gamma model. On the training set, the
GGPR again achieves a lower deviance with a su�cient number of clusters. Nevertheless,
the Nelder-Mead algorithm converges to a local minimum during the �t of hyper-parameters
of M32 and M52 kernels when K=150. On the training set, the deviances of GGPR models
with 100 clusters are close to the GLM deviance. On this set, the lowest AIC value is attained
with RQ kernel and K = 100.

Figure 5 compares the histograms of predicted mean claim severities computed with GLM
and GGPR (K = 50, RBF kernel and Gamma distribution), on the training and validation
sets. Table 6.10 compares the moments and percentiles of expected claim amounts. The
standard deviations and 5%-95% percentiles of GGPR predicted responses are a bit lower
than those of the GLM. The QQ-plots displayed in Figure 6 of GGPR and GLM expected
claim amounts con�rm this trend.
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Gamma Training set Validation set
K D(D) log-like. AIC D(D) log-like. AIC Time

RBF 50 873.6 -5811.83 11627.65 228.92 -1468.79 2941.59 1.33
100 772.4 -5759.47 11522.94 265.87 -1501.41 3006.82 1.28
150 742.15 -5747.65 11499.3 254.23 -1494.93 2993.85 2.83

RQ 50 845.12 -5790.62 11587.25 229.42 -1469.05 2944.11 3.14
100 721.31 -5737.99 11481.98 247.29 -1486.74 2979.48 2.41
150 687.75 -5723.84 11453.67 351.01 -1711.03 3428.06 3.10

M32 50 852.86 -5797.58 11599.16 232.63 -1470.28 2944.56 1.40
100 744.37 -5749.06 11502.12 271.9 -1506.05 3016.1 1.01
150 707.89 -5736.89 11477.78 371.21 -1715.59 3435.17 1.16

M52 50 875.11 -5811.21 11626.41 244.56 -1475.61 2955.22 1.35
100 779.15 -5770.3 11544.59 292.49 -1524.36 3052.73 0.85
150 729.82 -5754.08 11512.17 390.15 -1721.15 3446.29 1.04

GLM n.a. 838.76 -5788.27 11632.53 219.44 -1465.74 2987.49 n.a.

Table 6.8: Gamma model with log-link for MCC claim severities. Comparison of deviances,
log-likelihoods, AIC of GGPR for various cluster sizes (K), and GLM. The column �Time�
reports the duration for optimizing kernel parameters.

Figure 5: Histogram (20 bins) of observed and predicted log-claims on the training and
validation sets. GGPR predictions are computed with K = 100 clusters and the RQ kernel.
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Inv. Gaus. Training set Validation set
K D(D) log-like. AIC D(D) log-like. AIC Time

RBF 50 0.23 -6488.66 12981.32 0.10 -2043.71 4091.42 1.76
100 0.21 -6138.7 12281.4 0.12 -1559.85 3123.71 1.21
150 0.21 -6175.35 12354.71 0.10 -1845.32 3694.63 1.97

RQ 50 0.22 -5980.62 11967.24 0.11 -1591.66 3189.33 2.22
100 0.21 -6027.57 12061.15 0.12 -1564.01 3134.02 2.34
150 0.19 -6025.54 12057.08 0.11 -1554.69 3115.38 2.93

M32 50 0.21 -6317.18 12638.35 0.10 -1879.68 3763.36 1.9928
100 0.20 -6104.74 12213.49 0.11 -1562.43 3128.86 2.1113
150 0.21 -6257.09 12518.17 0.10 -1771.27 3546.55 2.3633

M52 50 0.21 -6162.0 12328.01 0.1 -1742.72 3489.45 3.1729
100 0.21 -6109.35 12222.71 0.12 -1559.02 3122.03 1.4672
150 0.21 -6366.4 12736.8 0.1 -1830.76 3665.51 1.7457

GLM n.a. 0.20 -6251.03 12558.06 0.11 -1557.36 3170.72 n.a.

Table 6.9: Inverse Gaussian model with log-link for MCC claim severities. Comparison of
deviances, log-likelihoods, AIC of GGPR for various cluster sizes (K), and GLM. The column
�Time� reports the duration for optimizing kernel parameters.

Method Mean Standard Percentiles
deviation 5% 95%

GGPR 22988 16022 4725 53023
Training GLM 24195 18515 4927 57164

Data 23585 34528 576 90987

GGPR 24693 15647 4761 52611
Validation GLM 25827 18043 4958 62341

Data 24624 30369 628 79021

Table 6.10: Mean, standard deviation, 5% and 95% percentiles of expected claim severities.

Figure 6: QQ plots of GGPR and GLM predictions with K = 100 clusters and the RQ
kernel.
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6.2.4 Claim frequencies

We next estimate a Poisson model with log-link for claim frequencies. We randomly split the
data set into training (80%) and validation (20%) sets. The hyper-parameters are estimated
by minimizing the deviance for a random sample of 10 000 policies from the training set.
Table 6.11 reports goodness-of-�t statistics. The GGPR outperforms the GLM in most
con�gurations both on training and validation sets. The M32 kernel with 500 clusters o�ers
a good trade-o� from this perspective.

Poisson Training set Validation set
K D(D) log-like. AIC D(D) log-like. AIC Time

RBF 250 4680.9 -2877.81 5759.63 1185.84 -729.84 1463.68 9.215
500 4667.23 -2870.98 5745.96 1170.97 -722.41 1448.81 25.089
750 4619.63 -2847.18 5698.36 1183.48 -728.66 1461.32 78.4479

RQ 250 4580.51 -2827.62 5661.24 1170.59 -722.21 1450.43 26.4901
500 4568.92 -2821.83 5649.65 1171.36 -722.6 1451.2 70.6792
750 4508.95 -2791.84 5589.68 1187.01 -730.43 1466.85 185.7749

M32 250 4611.11 -2842.92 5689.84 1176.02 -724.93 1453.86 12.6059
500 4607.43 -2841.08 5686.16 1168.46 -721.15 1446.3 31.2037
750 4554.12 -2814.42 5632.85 1186.58 -730.21 1464.42 122.8753

M52 250 4635.59 -2855.16 5714.32 1180.92 -727.38 1458.76 6.6902
500 4628.73 -2851.73 5707.46 1168.64 -721.24 1446.48 26.3908
750 4581.17 -2827.95 5659.9 1185.62 -729.73 1463.47 74.99

GLM n.a. 4607.52 -2841.12 5738.25 1198.63 -736.24 1528.47 n.a.

Table 6.11: Poisson model with log-link for MCC claim frequencies. Comparison of de-
viances, log-likelihoods, AIC of GGPR for various cluster sizes (K), and GLM. The column
�Time� reports the duration for optimizing kernel parameters.

Table 6.12 presents the moments and percentiles of predicted frequencies with GGPR
(M32 kernel with 500 clusters) and GLM. Figure 7 displays QQ-plots of predicted expected
claim frequencies. These plots emphasize that the GGPR model yields higher quantiles than
the GLM.

Method Mean Standard Percentiles
deviation 5% 95%

GGPR 0.0171 0.0239 0.0020 0.0607
Training GLM 0.0133 0.0200 0.0014 0.0488

Data 0.0254 0.6286 0.0000 0.0000

GGPR 0.0173 0.0237 0.0021 0.0619
Validation GLM 0.0133 0.0198 0.0014 0.0488

Data 0.0397 1.7004 0.0000 0.0000

Table 6.12: Mean, standard deviation, 5% and 95% percentiles of expected frequencies.
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Figure 7: QQ plots of GGPR and GLM predictions with K = 500 clusters and the M32
kernel.

7 Discussion

This paper introduced actuaries to GGPR model for risk classi�cation. It innovates by
adapting standard GGPR approach developed after Chan and Dong (2011) to re�ect insur-
ance data speci�c traits. Precisely, (i) risk exposures are accounted for, (ii) hyper-parameters
entering kernel functions are estimated by minimizing the deviance, (iii) categorical features
are included in the analysis by using Burt's distance to assess proximity, and (iv) K-means
clustering converts the initial data set into a limited number of �model points� to reduce the
dimension of the problem.

The numerical illustrations performed on two publicly available insurance data sets
demonstrate the excellent performances of GGPR compared to GLMs, with the advantage
that GGPR is in essence non-parametric and does not require to rigidly structure the score
beforehand. GGPR automatically accounts for possible interactions present in the data and
can be used as an agnostic preliminary risk evaluation.

Notice also that GGPR provides the actuary with a full predictive distribution, not only
point estimates. This helps the analyst to evaluate the con�dence in the resulting pure
premiums. Interpretation tools developed for machine learning models (like PDP, ICE or
feature importance implemented in scikit learn, for instance) apply to GGPR outputs.
This is also the case for interaction plots.

The embedding technique based on the scaled Burt matrix used for categorical features
goes back to multiple correspondence analysis proposed by the French statistical school in
the 1960s. See e.g. Hjellbrekke (2018) for a general account. It turns out to be very
e�ective to assess the association between categorical variables and to deal with categorical
information in insurance studies, as demonstrated by Hainaut (2019). There are of course
alternatives, like the neural embedding networks mentioned in the introductory section.
Another approach has been recently applied by Fernandes Machado et al. (2025) in the
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context of optimal transport. These authors transform categorical variables into continuous
ones using their compositional representation. An assessment of the respective merits of the
di�erent embedding techniques for categorical information, depending on the context, may
be relevant to guide practitioners.

In this paper, all continuous features have been banded to make them categorical and
assess the performances of the proposed embedding technique. It is nevertheless possible to
perform a GGPR analysis including both types of features, continuous ones and categorical
ones. The kernel in the GGPR model is then the product of one kernel for numerical features
and another kernel for categorical features. We leave further investigation of this approach
for a subsequent work.
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A Proof of Proposition 2.1

Since µ(xi) = l−1 (gi) and θi = γ′−1 (l−1 (gi)), the conditional probability density function of
yi given gi is retrieved from (2.1):

p (yi | gi) = exp

{
yi γ

′−1 (l−1 (gi))− γ (γ′−1 (l−1 (gi)))

ϕ/ω
+ c(y, ϕ, ω)

}
. (A.1)

By de�nition, the canonical link is such that l(·) = γ′−1(·) and the conditional probability
density function of yi given gi becomes

p (yi | gi) = exp

{
yi gi − γ (gi)

ϕ/ω
+ c(y, ϕ, ω)

}
. (A.2)

The �rst- and second-order derivatives of the log of (A.2) with respect to gi are respectively
equal to

d

dgi
ln p (yi | gi) =

ω

ϕ
(yi − γ′ (gi)) and

d2

dg2i
ln p (yi | gi) = −ω

ϕ
γ′′ (gi) .

The expression (2.5) of the gradient follows from (2.4). The matrix H(g) in Equation (2.7)
is the diagonal matrix of − d2

dg2i
ln p (yi | gi). If we derive twice (2.4), we retrieve (2.7). This

ends the proof.

B Proof of Proposition 2.2

As l−1(g) = eg, (A.1) shows that

p (yi | gi) ∝ exp

{
yi γ

′−1 (egi)− γ (γ′−1 (egi))

ϕ/ω

}
.

Given that d
dz
(γ′−1(z)) = 1

γ′′(γ′−1(z))
, we deduce that

d

dgi
γ
(
γ′−1 (egi)

)
= γ′

(
γ′−1 (egi)

) d

dg
γ′−1 (egi)

=
e2gi

γ′′ (γ′−1 (egi))
.

Therefore, the �rst-order derivative of ln p (yi | gi) is equal to

d

dgi
ln p (yi | gi) =

ω

ϕ

(
yi

d

dgi
γ′−1 (egi)− d

dgi
γ
(
γ′−1 (egi)

))
=

ω

ϕ

(
yi e

gi − e2gi

γ′′ (γ′−1 (egi))

)
,

which becomes (2.8) when rewritten as a vector. Deriving again this last expression leads to

d2

dg2i
ln p (yi | gi) =

ω

ϕ

d

dgi

[
yi e

gi − e2gi

γ′′ (γ′−1 (egi))

]
. (B.1)
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Given that

d

dgi

[
1

γ′′ (γ′−1 (egi))

]
= −e

giγ′′′ (γ′−1 (egi))

(γ′′ (γ′−1 (egi)))3
,

a direct calculation allows us to write

d

dgi

[
yi e

gi − e2gi

γ′′ (γ′−1 (egi))

]
=

yi e
gi − 2e2gi

γ′′ (γ′−1 (egi))
+
(
yi e

gi − e2gi
) d

dg

[
1

γ′′ (γ′−1 (egi))

]
(B.2)

=
yi e

gi − 2e2gi

γ′′ (γ′−1 (egi))
− (yi e

2gi − e3gi) γ′′′ (γ′−1 (egi))

(γ′′ (γ′−1 (egi)))3
.

Combining (B.2) and (B.1), we �nally obtain the second-order derivative of ln p (yi | gi):

d2

dg2i
ln p (yi | gi) =

ω

ϕ

(
yi e

gi − 2e2gi

γ′′ (γ′−1 (egi))
− (yi e

2gi − e3gi) γ′′′ (γ′−1 (egi))

(γ′′ (γ′−1 (egi)))3

)
.

The matrix H(g) in (2.9) is the diagonal matrix of − ∂2

∂g2i
ln p (yi | gi). This ends the proof.

C Proof of Proposition 2.3

Without any assumption on the distribution and link function, the �tted value ŷ′ is obtained
from the approximation

E (Y ′ | D,x′) =

∫
l−1 (g′) p (g′ | D,x′) dg′ (C.1)

≈
∫
l−1 (g′) q (g′ | D,x′) dg′

where
q (g′ | D,x′) ∼ N

(
µq (x

′|D) , σ2
q (x

′|D)
)
. (C.2)

Using the properties of the multivariate Normal distribution and (2.12), the expectation
µq (x

′|D) is given by

µq (x
′|D) = Eq (E (G′|D, g,x′) |D) (C.3)

= Eq (µg (x
′|D, g) |D)

= k(x′,X)⊤C(X,X)−1ĝ .

The variance σ2
q (x

′|D) can be rewritten as

σ2
q (x

′|D) = V (G′|D,x′) (C.4)

= E (V (G′|D,x′, g)) + Vq (E (G′|D,x′, g)) .

The �rst term is provided by (2.13), whereas the second term is equal to

Vq (E (G′|D,x′, g)) = Vq (µg (x
′|D, g))

= k(X,x′)⊤C(X,X)−1Σg C(X,X)−1k(X,x′) .
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Inserting this expression in (C.4), we obtain

σ2
q (x

′|D) = k(x′,x′)− k(X,x′)⊤
[
C(X,X)−1 − C(X,X)−1

×
(
H(ĝ) + C(X,X)−1

)−1
C(X,X)−1

]
k(X,x′) .

The matrix inversion lemma (see, e.g., Rasmussen and Williaws, 2006, appendix A) states
that (

Z + UWV ⊤)−1
= Z−1 − Z−1U

(
W−1 + V ⊤Z−1U

)−1
V ⊤Z−1

where Z is n × n, W is p × p (with p ≤ n) and U and V of size n × p. We obtain (2.16)
using this lemma with Z = C(X,X), W = H(ĝ)−1 and U , V that are identity matrices.
In the Normal case with canonical link, ŷ′ is the expectation (2.15) of q (g′ | D,x′). For the
Gamma, Inverse Gaussian, Poisson, Binomial distributions with log-link function, ŷ′ is the
expectation (2.18) of a Log-Normally distributed random variable. This ends the proof.

D Batch K-means

At each iteration, a new random sample of b records is obtained and used to update the
clusters in the K-means algorithm, taking care of deprecating previous coordinates accord-
ing to a learning speed. This operation is repeated until convergence. The procedure is
summarized in Algorithm 2.
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Algorithm 2 Batch K-means algorithm

Initialization:

Randomly set up initial positions of K centroids
Initialize clusters S

(0)
1 = .... = S

(0)
K = ∅

Main procedure:

For e = 1 to maximum epoch, emax

Random sampling of the batch dataset M of size b
Initialize sample clusters S

(e)
1 = .... = S

(e)
K = ∅

Assignment step:

For i = 1 to b
1) Assign ith policy to cluster S

(e)
u where

S(e)
u = {u|d(i , cu(e− 1)) ≤ d(i , cj(e− 1)) for j = 1, ..., K} .

End loop on batch data set, i.
Update step:

For u = 1 to K
2) Calculate the centroids of the batch assigned to S

(e)
u :

cu(e) =
1

|S(e)
u |

∑
i∈S(e)

u

xi .

3) Let ηu(e) =
|S(e)

u |
|S(e−1)

u |+|S(e)
u |

. Update centroids cu(e) :

cu(e) = (1− ηu(e)) cu(e− 1) + ηu(e)cu(e) .

End loop on centroids u.
End loop on epochs e
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