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Abstract : This article introduces an equity-Libor Market Model (LMM) that
integrates the investment strategy into the valuation process of participating life
insurances. Within this framework, we consider bond portfolios rebalanced across
multiple maturities and provide a semi-analytical formula for approximating the fair
value of liabilities. We then investigate the impact of the investment policy on the
net asset value and the solvency capital requirement. To carry out this analysis, we
propose a Monte Carlo method for generating sample paths under both Libor and
real measures, alongside an estimation procedure under the real measure. The nu-
merical illustration focuses on the asset-liability management of an endowment and
a life annuity.

Keywords : Libor market model, life insurance, asset-liability management

1 Introduction

The literature on the valuation of participating life insurance is vast, but few articles include
bond investment strategies with multiple maturities. The bond portfolio is often a single maturity
zero-coupon bond, with or without rebalancing, as in Barbarin and Devolder (2005) or Hainaut
(2009 and 2010). In many models with stochastic interest rates, the portfolio of investments is
instead modeled by a single asset, as in Bernard et al. (2005), Krayzler et al. (2016), or Hanna
and Devolder (2023). To improve the analytical tractability of models, the interest rate is also
often assumed constant. Without being exhaustive, we refer to Bacinello (2001), Ballotta et al.
(2006), Gatzert and Kling (2007), or Gatzert (2008) for valuation models using this hypothesis.

In the literature about valuation with stochastic rates, the dominant approach is based on an
a�ne process for the short-term rate, such as in the Hull and White model (1999). A competing
framework is the Libor Market Model (LMM). It was introduced by Brace et al. (1997), and its
features were explored by Jamshidian (1997) and Miltersen et al. (1997). The LMM has become
a standard in the �nancial industry mainly due to its analytical tractability and its capacity to
replicate the implied volatility surface of derivatives. Many extensions have been proposed since
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its creation. Andersen and Andreasen (2000), for instance, consider a version with local volatil-
ity. Andersen and Bortherton-Ratcli�e (2005) introduced stochastic volatility, whereas Eberlein
et al. (2005) replaced the Brownian motions with general Lévy processes. Errais and Mercurio
(2005) developed an extension with parameter uncertainty. We refer the reader to chapters 11
and 12 of Brigo and Mercurio (2007) for a survey of other variants of the LMM.

Nevertheless, few articles exploit the LMM for valuing life insurance liabilities. Among them,
Schrager and Pelsser (2004) consider a variant of the hybrid equity-LMM to estimate participat-
ing insurance contracts. Gach et al. (2023) propose a mean-�eld Libor market model for the
valuation of long-term guarantees. This approach may be regarded as a generic Libor market
model with a time-dependent volatility structure, as introduced in Desmettre et al. (2021). It
remedies the "blow-up" of interest rates during simulations. We refer to Gerhold (2011) for ex-
planations about this phenomenon. The literature about hybrid equity-Libor market models is
also scarce. We can cite Grzelak and Oosterlee (2012), who develop a hybrid LMM in which the
equity part is ruled by a di�usion with stochastic volatility. Pilz and Schlogl (2015) propose a
hybrid commodity and interest rate market model, constructed analogously to the multi-currency
LMM. This is explained by the di�culty in specifying an analytically tractable model, as stock
prices exhibit a di�erent market dynamic than forward rates.

Our article contributes to the literature on the valuation of life insurance by integrating the
bond-equity investment strategy in a hybrid LMM. We consider a with-pro�t contract for which
the participation is linked to the performance of a portfolio of stocks and bonds with multiple
maturities, regularly rebalanced. In this setting, we provide a semi-analytical formula for approx-
imating liability values. We then discuss how the bond strategy impacts market risk indicators
such as the net asset value (NAV) and solvency capital requirement (SCR). As most of capital
indicators are based on simulations, we develop and test a Monte Carlo method for generating
paths. Given the complexity of the drift in the dynamics of stock prices, we estimate the stock
risk premium directly from sample paths. We also provide a calibration method for estimating
the hybrid model under P. The numerical analysis focuses on three bond strategies, including a
cash-�ow matching approach. This allows us to discuss the e�ciency of reinvestment strategies
based on constant duration, as imposed in Solvency II.

The outline of the article is as follows: We start by introducing the features of the insurance
contract and the benchmark asset portfolio. Section 3 presents the hybrid equity-Libor market
model. We discuss the valuation in Section 4. Section 5 details the Monte Carlo method for
simulating sample paths under the spot Libor and real probability measure. The next section fo-
cuses on asset-liability management indicators. Section 8 develops an e�cient estimation method
under P. In Section 8, we analyze the impact of the investment policy on the value and risk
exposure of two insurance contracts. We also check the accuracy of the semi-analytical valuation
formula.

2 The insurance contract and benchmark asset

We consider a participating insurance contract of maturity Tg, where g ∈ N. The contract is
purchased by a x-year old individual. The participation is linked to a benchmark portfolio of
stocks and bonds whose market value is denoted by (At)t≥0. The fair value of liabilities, also
called the �best estimate�, is denoted by (Lt)t≥0. τx is the random remaining survival time of
the individual. In case of premature decease, the capital is paid at the end of a period of length
τ (a quarter, semester or year). The payment dates are T0, T1, T2, ..., Tg where T0 = τ and
Tk = Tk−1 + τ for k = 1, ..., g.
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The death and survival minimum bene�ts paid at time Tk are proportional to the reference asset

and lower bounded by d
(min)
k and l

(min)
k capitalized at guaranteed rate rm ∈ R+, for k = 0,...,g.

We assume that the contract is �nanced by a lump sum payment and that bene�ts are positive.
The guaranteed interest rate is noted rg ∈ R+. The cash-�ows in case of death or survival at

time Tk are denoted by CF
(d)
k and CF

(s)
k :CF

(d)
k = max

(
(1 + rg)

Tk d
(min)
k ;

ATk
A0

d
(min)
k

)
Tk−1 < τx ≤ Tk k = 0, ..., g ,

CF
(s)
k = max

(
(1 + rg)

Tk l
(min)
k ;

ATk
A0

l
(min)
k

)
Tk < τx .

In order to evaluate liabilities, we reformulate the cash-�ows as the sum of minimum guaranteed
bene�ts and a call option payo�:(1 + rg)

Tk d
(min)
k +

(
ATk
A0

d
(min)
k − d

(min)
k (1 + rg)

Tk

)
+

Tk−1 < τx ≤ Tk k = 0, ..., g ,

(1 + rg)
Tk l

(min)
k +

(
ATk
A0

l
(min)
k − l

(min)
k (1 + rg)

Tk

)
+

Tk < τx .

This framework is general enough to include a large range of products such as endowments,

annuities or death insurances. For a participating endowment contract, we set d
(min)
k = l

(min)
g ∈

R+, for k = 0, ..., g. For a participating temporary life annuity, there is no death bene�ts

d
(min)
k = 0, and the minimum (constant) survival bene�ts are equal to the discounted annuity:

l
(min)
k = l (1 + rg)

−Tk . A temporary participating death insurance has no life bene�ts, lk = 0

and dk = d (1 + rg)
−Tk , with d ∈ R+.

All processes are de�ned on a complete probability space Ω, endowed with a �ltration (Ft)t≥0 and
a risk neutral probability measure, Q. The cash account has a market value denoted (Bt)t≥0 and
we assume that B0 = 1. The market is assumed to be arbitrage-free and therefore any discounted
asset is a martingale under Q. We denote the survival probability by s−tpx+t = Q(τx > s | τx ≥ t)
and the death probability by sqx+t = Q (τx ≤ t+ s | τx ≥ t). If s = 1, we write qx+t instead of

1qx+t. We de�ne a function of time returning the date of the next payment,

β(t) = min (i | t < Ti , i = 1, ...n) .

To lighthen further developments, we denote by VL(t, Tj), the value of the discounted cash-�ow
paid at time Tj for an initial unit death or life bene�t, i.e.

VL(t, Tj) = EQ
[
Bt

BTj

(
(1 + rg)

Tj +

(
ATj

A0
− (1 + rg)

Tj

)
+

)
|Ft

]
.

Under the assumption of independence between mortality and �nancial market, the fair value
of liabilities at time t ≤ Tg is the sum of expected future discounted cash-�ows, weighted by
survival or death probabilities:

Lt =
(

Tβ(t)−tqx+td
(min)
β(t) + Tβ(t)−tpx+tl

(min)
β(t)

)
VL
(
t, Tβ(t)

)
+

g∑
j=β(t)

(
Tj−tpx+t qx+Tjd

(min)
j+1 + Tj+1−tpx+tl

(min)
j+1

)
VL (t, Tj+1) .

This fair-value is also called the �best estimate� in the Solvency II regulation. We assume that

interest rates are stochastic and we denote the zero-coupon bond by P (t, T ) = EQ
(

Bt
BT

|Ft

)
.

The participating contract will be evaluated under an equivalent forward measure to Q. The
forward measure F(j) uses as numeraire, the zero-coupon bond of maturity Tj , P (t, Tj). Under
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F(j), all traded assets discounted by P (t, Tj) are martingales. Using standard arguments, we
rewrite the fair value of discounted unit bene�t in terms of a forward expectation:

VL(t, Tj) = P (t, Tj) (1 + rg)
Tj +

1

A0
P (t, Tj)EF(j)

[(
ATj −A0 (1 + rg)

Tj

)
+
|Ft

]
. (1)

Valuing the best estimate of participating contracts is then equivalent to appraising call options
on the benchmark asset. The complexity of this calculation mainly depends on the choice of the
asset dynamics. In this work, interest rates are governed by the Libor Market Model (LMM) for
two reasons. Firstly, this model is adopted by many insurance companies for evaluating their
exposure to interest rates in Solvency II. Secondly, even though this model is de�ned in contin-
uous time, it is based on a �nite set of forward rates with discrete maturities. We will see that
the advantage of such a speci�cation is that it allows for the implementation of dynamic bond
strategies for the asset. Within this framework, we assess the impact of bond allocation, and
more generally of the ALM policy, on the value of participating insurance contracts.

Before detailing the LMM, we focus on the dynamic of the benchmark asset. We design it
in order to replicate at best a realistic investment strategy. We consider a stock price pro-
cess, (St)t≥0 and n zero-coupon bonds with maturities {T0, T1, T2, . . . , Tn} where T0 = τ and
Tk = Tk−1+ τ for k = 1, ..., n. The longest bond maturity is at least equal to the contract expiry
date, Tn ≥ Tg and by construction, intermediate bond maturities coincide with payment dates
of the insurance policy.

We adopt an hybrid continuous and discrete time rebalancing strategy for the asset. We as-
sume that the insurer invests a fraction π ∈ [0, 1] of the total asset in stocks. The remaining is
invested in bonds. The structure of the bond portfolio is stored in a positive matrix ηiu ∈ R+ for
i = 1, ..., g and u = 0, ..., n. More precisely, we assume that at time t ∈ [Ti−1, Ti) with i ≤ g, the
insurer holds an amount

(1− π)
ηiu∑n
v=i η

i
v

At = (1− π)
η
β(t)
u∑n

v=β(t) η
β(t)
v

At (2)

of bond P (t, Tu), of maturity Tu for u = β(t), ..., n. This expression is �exible enough to imple-
ment various type of bond strategies. In Equation (2), we use

∑n
v=i η

i
v as normalization factor to

avoid to introduce the constraint
∑n

v=i η
i
v = 1. In the numerical illustration, we focus on three

investment policies. In the �rst one, the insurer homogenously invests (1− π)At in bonds with
expiry dates between Tm1 and Tm2 , with m1,m2 ∈ N, m1 ≤ g ≤ m2 ≤ n:

ηiu =

{
1 m1 ≤ u ≤ m2

0 otherwise
, i = 1, ..., g. (3)

This allocation is called ��xed maturity bucket (FMB) strategy�.

In the second strategy, the bond maturities are rebalanced at dates Ti to approximatively keep
constant the duration of the portfolio. At time Ti, (1− π)At is invested into bonds of durations
from Ti+m1 − Ti to Ti+m2 − Ti, with m1,m2 ∈ N , i+m1 ≤ i+m2 ≤ n:

ηiu =

{
1 m1 ≤ u− i ≤ m2

0 otherwise
, i = 1, ..., g. (4)

This policy of investment is called �constant duration bucket (CDB) strategy�. This is the only
strategy accepted by the regulator for computing best estimates in Solvency II. The motivation
for such a choice is that insurance companies must simulate their investment on an ongoing basis
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even if liabilities cash-�ows are in run-o�. In the numerical illustration, we will quantify the
impact of this rule on the value of insurance contracts.

The last investment policy is called �partial cash-�ow matching (PCFM) strategy�. We allo-
cate (1− π)At in a portfolio of bonds with maturities corresponding to liability payment dates.
Furthermore, the invested amounts are proportional to expected minimum bene�ts, discounted
with the initial yield curve:

ηiu =

{
ergTu

(
Tu−1−Ti−1px+Ti−1 qx+Tu−1d

(min)
u + Tu−Ti−1px+Ti−1 l

(min)
u

)
P (0,Tu)
P (0,Ti−1)

i ≤ u ≤ g ,

0 otherwise .

(5)
In a �rst stage, we will quantify the impact of the investment strategy of the reference asset on
the fair value of the participating policy. But before discussing the valuation method, we need
to specify the market dynamics.

3 The hybrid equity-Libor market model

In addition to the stock price process, (St)t≥0 , we consider n forward rates. The forward rate
at time t, for a future operation with �xing at time Ti−1 and settled at Ti (with t ≤ Ti−1 ≤ Ti)
is denoted by

F i
t = F (t, Ti−1, Ti) i = 1, . . . , n .

Fixing dates are equispaced by τ , and correspond to liability and bond maturities. In the Libor
Market Model (LMM), the short term rate is not explicitely de�ned. We instead specify the
dynamic of forward rates under their respective equivalent measures. For this reason, we do not
specify the dynamic of (St)t≥0 under the risk neutral measure. We instead focus on the forward
stock price, of maturity Tn, de�ned as follows

Y n
t =

St
P (t, Tn)

, t ≤ Tn.

By de�nition, Y n
t is a martingale under the forward measure F(Tn), with P (t, Tn) as numeraire:

EF(n) (Y n
s |Ft) = Y n

t and limt→Tn Y
n
t = STn . By construction, the current value of the stock price

is the discounted expected forward price:

St = P (t, Tn)EF(n) (Y n
Tn

| Ft

)
.

In the LMM, forward rates
(
F i
t

)
0≤t≤Ti−1

are ruled by the following SDE under measure F(i),

dF i
t = σi(t)

(
F i
t + α

)
Σi,: dW

F(i)
t i = 0, ..., n , t ≤ Ti .

where α ∈ R+ andW
F(i)
t =

(
W

F(i),1
t , ...,W

F(i),p
t

)⊤
is a vector of independent Brownian motions

of dimension p ≤ n. Σi,: is the i
th line of a n× p matrix, denoted by Σ while σi(t) is a integrable

function of time. As Y n
t is a martingale under the forward measure F(n), we model it by the

following Doleans Dade exponential for t ≤ Tn :

dY n
t

Y n
t

= σS

(
ΣY FdW

F(n)
t +ΣY Y dW

S,F(n)
t

)
t ≤ Tn

where ΣY F is a line vector of dimension p and ΣY Y is a scalar. W
S,F(n)
t is a Brownian motion,

independent from W
F(n)
t . The (n + 1) × (p + 1)-matrix

(
Σ 0

ΣY F ΣY Y

)
is the lower Cholesky
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decomposition of the correlation matrix between forward rates and the forward stock price. If
ρF iF j and ρY F j are respectively the correlations between F i

t , F
j
t and F j

t , Yt , we have that:

(
Σ 0

ΣY F ΣY Y

)(
Σ⊤ Σ⊤

Y F

0 ΣY Y

)
=


1 . . . ρFnF 1 ρY F 1

...
. . .

...
...

ρFnF 1 . . . 1 ρY Fn

ρY F 1 . . . ρY Fn 1

 .

Note that our framework di�ers from that of Schrager and Pelsser (2004). Firstly, forward bond
prices are driven by geometric di�usion instead of forward rates. Secondly, the reference asset for
the participation is a single risky fund instead of a portfolio of bonds and stocks. Our approach
also slightly di�ers from Grzelak and Oosterlee (2012), who de�ne the dynamics of stocks under
the risk-neutral measure. Instead, we de�ne it immediately under the forward measure, which
slightly reduces the complexity of the valuation. Applying the Itô's lemma to log-prices allows
us to show that Y n

Tn
is log-normal under the measure F(n):

Y n
Tn

∼ N

(
−1

2
σ2Y,n(t) ; σ

2
Y,n(t)

)
,

where σ2Y,n(t) is equal to

σ2Y,n(t) = σ2S(Tn − t) .

To specify the stock price under other forward measures than F(n), we need to infer the dynamics
of bond prices. The condition of absence of arbitrage implies that for t ≤ Tk, the bond price of
maturity Tk is equal to the a product of forward discount bonds:

P (t, Tk) = P (t, Tβ(t))
k∏

j=β(t)+1

1

1 + τF j
t

.

In practice (e.g. in simulations), P (t, Tβ(t)) is unknown and we need to use the approximation
L(t, Tβ(t)) ≈ F (Tβ(t)−1, Tβ(t)−1, Tβ(t)) for t ∈ [Tβ(t−1), Tβ(t)). Using this, the zero-coupon bond is
approached by

P (t, Tk) ≈ 1

1 +
(
Tβ(t) − t

)
F

β(t)
Tβ(t)−1

k∏
j=β(t)+1

1

1 + τF j
t

. (6)

Based on this last statement, we infer in the next proposition the SDE driving P (t, Tk). In most
of the developments, the time-dependent part in SDE's is unnecessary and complex. For this
reason, We adopt the notation (...) for terms that are not needed in the following developments.

Proposition 1. For i ≤ k, the zero-coupon bond price of maturity Tk is ruled by the following

SDE under F(i)

dP (t, Tk) = (...)dt− P (t, Tk)

k∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t (7)

Proof. From standard stochastic calculus, the di�erential of the product is:

d

 k∏
j=β(t)+1

1

1 + τF j
t

 = −
k∑

j=β(t)+1

1

1 + τF j
t

 k∏
j=β(t)+1

1

1 + τF j
t

 dF j
t

+(...) dt .
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From Equation (6), we infer the di�erential of the ZC bond:

dP (t, Tk) = (...)dt− P (t, Tk)
k∑

j=β(t)+1

1

1 + τF j
t

dF j
t

= (...)dt− P (t, Tk)

k∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(j)
t

We switch to the measure F(i) with numeraire P (t, Ti) (such that Ti ≤ Tk). From Proposition 6
in appendix A, we have that

dW
F(j)
t = dW

F(j+1)
t −

τσj+1(t)
(
F j+1
t + α

)
Σ⊤
j+1,:

1 + τF j+1
t

dt .

Plugging this in the expression of dP (t, Tk) leads to

dP (t, Tk) = (...) dt− P (t, Tk)

k∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t .

In order to determine the dynamic of the total asset in the next section, we need the following
proposition that provides the dynamic of stocks under di�erent forward measures from F(n).

Proposition 2. Under the measure F(i) with i ≥ β(t)+1, the stock price is solution of the SDE:

dSt = Stµ
F(i)
S (t) dt− St

n∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t (8)

+StσS

(
ΣY FdW

F(i)
t +ΣY Y dW

S,F(i)
t

)
.

where µ
F(i)
S (t) is a Ft-adapted process without a closed-form expression.

Proof. By de�nition, St = Y n
t P (t, Tn). Using Eq. (7), the di�erential of St is therefore

dSt = Y n
t dP (t, Tn) + P (t, Tn) dY

n
t + d ⟨Y n

t , P (t, Tn)⟩

= St(...) dt− St

n∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(n)
t

+StσS

(
ΣY FdW

F(n)
t +ΣY Y dW

S,F(n)
t

)
Operating again a change of mesure from F(n) to F(i), we obtain the result.

4 Valuation of liabilities

The valuation of the participating option in Equation (1), requires determining the dynamic of
the benchmark portfolio, At, under a forward measure. Let us recall that we invest a fraction
π of At in equity and (1 − π)At into bonds. The bond strategy is de�ned by the matrix ηiu for
i = 1, ..., g and u = 0, ..., n, according to Equation (2).
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Proposition 3. Under the forward measure F(i), with i ≥ β(t) + 1,the benchmark asset dis-

counted by P (t, Ti) is ruled by the following SDE:

d

(
At

P (t, Ti)

)
=

At

P (t, Ti)

i∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t (9)

+
At

P (t, Ti)
πσS

(
ΣY FdW

F(i)
t +ΣY Y dW

S,F(i)
t

)
− Atπ

P (t, Ti)

n∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t

−At (1− π)

P (t, Ti)

n∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

∑n
u=j η

β(t)
u∑n

v=β(t) η
β(t)
v

dW
F(i)
t .

Proof. Under F(i), the discounted portfolio is a martingale. On the other hand, we have that

d

(
At

P (t, Ti)

)
=

dAt

P (t, Ti)
+Atd

(
1

P (t, Ti)

)
+

1

2
d

〈
At,

1

P (t, Ti)

〉
,

where by de�nition of the benchmark portfolio,

dAt

P (t, Ti)
=

At

P (t, Ti)
π
dSt
St

+
(1− π) η

β(t)
β(t)∑n

v=β(t) η
β(t)
v

At

P (t, Ti)

dP (t, Tβ(t))

P (t, Tβ(t))

+
n∑

u=β(t)+1

(1− π) η
β(t)
u∑n

v=β(t) η
β(t)
v

At

P (t, Ti)

dP (t, Tu)

P (t, Tu)
.

Furthermore, applying the Itô's lemma to Equation (6) leads to

d

(
1

P (t, Ti)

)
= (...)dt− 1

P (t, Ti)2
dP (t, Ti) .

In the LMM, we assume that the yield of P (t, Tβ(t)) is constant for t ∈
[
Tβ(t)−1 , Tβ(t)

]
and

therefore
dP (t, Tβ(t))

P (t, Tβ(t))
= F

β(t)
Tβ(t)−1

dt

We �nally infer the following asset dynamic:

d

(
At

P (t, Ti)

)
= (...) dt− At

P (t, Ti)

dP (t, Ti)

P (t, Ti)

+
At

P (t, Ti)
π
dSt
St

+
(1− π) η

β(t)
β(t)∑n

v=β(t) η
β(t)
v

At

P (t, Ti)
F

β(t)
Tβ(t)−1

dt

+
n∑

u=β(t)+1

(1− π) η
β(t)
u∑n

v=β(t) η
β(t)
v

At

P (t, Ti)

dP (t, Tu)

P (t, Tu)
.

We next substitute dSt
St

by Eq. (8) and combine previous relations to obtain the SDE driving

8



At
P (t,Ti)

. Under F(i), At
P (t,Ti)

is a martingale, the drift is therefore null and we �nd that

d

(
At

P (t, Ti)

)
=

At

P (t, Ti)

i∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t

+
At

P (t, Ti)
πσS

(
ΣY FdW

F(i)
t +ΣY Y dW

S,F(i)
t

)
− At

P (t, Ti)
π

n∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t

− At

P (t, Ti)

n∑
u=β(t)+1

(1− π) η
β(t)
u∑n

v=β(t) η
β(t)
v

u∑
j=β(t)+1

σj(t)
(
F j
t + α

)
Σj,:

1 + τF j
t

dW
F(i)
t .

We conclude by switching the summation order in the last equation:

n∑
u=β(t)+1

u∑
j=β(t)+1

... =

n∑
j=β(t)+1

n∑
u=j

...

Equation (9) reveals that At
P (t,Ti)

is a geometric di�usion. Its statistical distribution is never-
theless unknown since it depends on forward rates. A common and robust assumption consists

to �freeze� the ratios
(F j

0+α)
1+τF j

0

to their initial value as e.g. recommanded in Brigo and Mercurio

(2007).

Conjecture 1. For j=1,...,n We assume that

ψj =

(
F j
0 + α

)
1 + τF j

0

≈

(
F j
t + α

)
1 + τF j

t

. (10)

Using this assumption, the dynamic of At
P (t,Ti)

is rewritten as follows:

d

(
At

P (t, Ti)

)
=

At

P (t, Ti)
πσSΣY Y dW

S,F(i)
t +

At

P (t, Ti)

×

π σSΣY F +
i∑

j=β(t)+1

σj(t)ψjΣj,:

−
n∑

j=β(t)+1

σj(t)ψjΣj,:

π + (1− π)

∑n
u=j η

β(t)
u∑n

v=β(t) η
β(t)
v

 dW
F(g)
t .

As all the coe�cients are constant or deterministic, we infer that At
P (t,Ti)

is log-normal under the

forward measure F(i). Let us de�ne σ2A,i(t, s), the variance of As|Ft under the measure F(i) :

σ2A,i(t, s) := π2σ2S (ΣY Y )
2 (s− t) +

∫ s

t

π σSΣY F +
i∑

j=β(z)+1

σj(z)ψjΣj,: (11)

−
n∑

j=β(z)+1

σj(z)ψjΣj,:

π + (1− π)

∑n
u=j η

β(z)
u∑n

v=β(z) η
β(z)
v

2⊤

dz ,
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where we adopt the notation x2⊤ = xx⊤ to shorten expressions. In the numerical illustration,
the integral in Equation (11) is computed numerically. Applying the Itô's lemma to ln At

P (t,Ti)
,

allows us to infer that:

ln

(
ATi

P (Ti, Ti)

/
At

P (t, Ti)

)
∼ N

(
−1

2
σ2A,i(t, Ti) ; σ

2
A,g(t, Ti)

)
.

As we are in a log-normal framework, we can easily retrieve a �Black & Scholes� like equation
for valuing the participating contract.

Proposition 4. Let Φ(.) be the cumulative distribution function (cdf) of a N(0, 1) random

variable. For j = 0, ..., g, let us de�ne

dj2(t) =

ln

(
P (t,Tj)A0(1+rg)

Tj

At

)
+ 1

2σ
2
A,j(t, Tj)

σA,j(t, Tj)
,

dj1(t) = d2(t)− σA,j(t, Tj) .

Under the hypothesis (10), the best estimate of the participating contract is approximated by

Lt =
(

Tβ(t)−tqx+td
(min)
β(t) + Tβ(t)−tpx+tl

(min)
β(t)

)
VL
(
t, Tβ(t)

)
(12)

+

g∑
j=β(t)

(
Tj−tpx+t qx+Tjd

(min)
j+1 + Tj+1−tpx+tl

(min)
j+1

)
VL (t, Tj+1) .

where VL(t, Tj) is the sum of a discounted guaranteed bene�t and of the participating option:

VL(t, Tj) = P (t, Tj) (1 + rg)
Tj +

At

A0
Φ
(
−dj1(t)

)
− P (t, Tj) (1 + rg)

Tj Φ
(
−dj2(t)

)
. (13)

The accuracy of this approximation will be checked in the numerical analysis by comparison
with prices obtained by Monte-Carlo simulations.

5 Asset simulations

Before detailing the simulation method, we need to choose a measure under which we will perform
them. In this article, we choose the spot Libor measure at time t, noted L(t). This is the shortest
term forward measure that is still in force at time t:

L(t) = F(β(t) + 1) .

We can prove (see e.g. Brigo and Mercurio 2007) that it is the equivalent of the risk neutral
measure but with a numeraire that is a cash account, (BTk

)k=0,...,n capitalized at Libor rate:

BTk
= BT0

k∏
i=1

(1 + τL(Ti−1, Ti)) = BT0

k∏
i=1

(1 + τF (Ti−1, Ti−1, Ti)) .

We alsoneed this measure to construct later the dynamics of stocks and forward rates under the
real measure P. This step is required for computing the solvency capital according to Solvency
II. We will come back on this point in Section 6.

Proposition 5. The dynamic of the forward stock price, Y n
t , under the spot Libor measure L(t)

is given by

dY n
t

Y n
t

=
n∑

k=β(t)+1

τσk(t)σS
(
F k
t + α

)
ρY Fk

1 + τF k
t

dt (14)

+σS

(
ΣY FdW

L(t)
t +ΣY Y dW

S,L(t)
t

)
.

10



Whereas forward rates F j
t with j ≥ β(t) + 1 under L(t) are ruled by

dF j
t(

F j
t + α

) =

n∑
k=β(t)+1

τσk(t)σj(t)ρj,k
(
F k
t + α

)
1 + τF k

t

dt+ σj(t) Σj,: dW
L(t)
t (15)

Proof. From Prop. 6 in Appendix A, if θit = − τσi(t) (F i
t+α)Σ⊤

i,:

1+τF i
t

, we have that

dW
F(i−1)
t = dW

F(i)
t + θitdt ,

and dW
S,F(n−1)
t = dW

S,F(n)
t (because of the independence between W

S,F(n)
t and W

F(n)
t ). As

Σn,:Σ
⊤
Y F = ρY Fn , we �nd that

dY n
t

Y n
t

=
τσn(t)σS (Fn

t + α) ρY Fn

1 + τFn
t

dt

+σS

(
ΣY FdW

F(n−1)
t +ΣY Y dW

S,F(n−1)
t

)
.

We infer Equation (14) by iterating. Statement (15) is a direct consequence of the same Propo-
sition 6.

Simulations of Y n
t and F j

t 's are performed by Euler discretization of Equations (14) and (15).
If the discretization step is denoted by ∆ ∈ R+, Y n

t+∆ is simulated from Y n
t using the recursion:

Y n
t+∆ − Y n

t

Y n
t

=

n∑
k=β(t)+1

τσk(t)σS
(
F k
t + α

)
ρY Fk

1 + τF k
t

∆ (16)

+σS

(
ΣY F∆W

L(t)
t +ΣY Y ∆W

S,L(t)
t

)
,

where ∆W
L(t)
t and ∆W

S,L(t)
t are respectively realizations of normal random variables of sizes p

and 1, with null means and standard deviations
√
∆. In a similar manner, the forward rates are

built with the following formula:

F j
t+∆ − F j

t(
F j
t + α

) =

j∑
k=β(t)+1

τσk(t)σj(t)ρj,k
(
F k
t + α

)
1 + τF k

t

∆+ σj(t) Σj,:∆W
L(t)
t , (17)

for j = 1, ..., n. After simulating forward rates and stock prices, we can reconstruct the term
structure of bond prices and determine the stock value using the relations:P (t, Tk) ≈ 1

1+(Tβ(t)−t)Fβ(t)
Tβ(t)−1

∏k
j=β(t)+1

1

1+τF j
t

,

St = P (t, Tn)Y
n
t .

Using again an Euler discretization, we calculate the sample path of the benchmark portfolio:

An
t+∆ −An

t

An
t

= π
Sn
t+∆ − Sn

t

Sn
t

+ (1− π)× (18)

n∑
u=β(t)

η
β(t)
u∑n

v=β(t) η
β(t)
v

P (t+∆, Tu)− P (t, Tu)

P (t, Tu)
.

We will use this procedure to evaluate participating contracts by simulations and estimate the
accuracy of the approximated formula (12).
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The computation of risk management indicators introduced in Section 6, requires simulations
under the real measure P. From the Radon-Nykodym theorem, the dynamics of the forward
stock price and rates under P are obtained by substituting{

W
L(t)
t =W P

t + θtdt ,

W
S,L(t)
t =WS,P

t + θSt dt ,

whereW P
t , W

S,P
t are P-Brownian motions and θt, θ

S
t are risk premiums. θt, θ

S
t are Ft−adapted

processes. Knowing these risk premiums, we can adapt Equations (16), (17), (18) to simulate
sample paths under P.

In practice, estimating the risk premiums for the interest rate risk is challenging. In the numer-

ical illustration, we adopt a conservative assumption which is W
L(t)
t = W P

t . This assumption
is commonly applied by practitioners. On the other hand, we choose θSt such that the average
stock return under P denoted by µ ∈ R+, is constant. From Proposition 2, we infer the dynamic
of the stock price under the real measure:

dSt = µStdt− St

n∑
k=β(t)+1

σk(t)
(
F k
t + α

)
Σk,:

1 + τF k
t

dW
L(t)
t (19)

+StσS

(
ΣY FdW

P
t +ΣY Y dW

S,P
t

)
.

and that the risk premium must therefore be equal to

θSt =
µ− µLS(t)

σSΣY Y
,

where µLS(t) is the drift of stock prices, as de�ned in Proposition 2, under the Libor measure.
Nevertheless, the analytical expression of µLS(t) is too complex for being determined. We instead
estimate it directly from stock and forward stock prices, simulated under the Libor measure L(t).
To do this, we combine Euler discretization of Equations (19), (14) and infer from simulated
variations of stock and forward stock prices that

µLS(t)∆ =
Sn
t+∆ − Sn

t

Sn
t

−
Y n
t+∆ − Y n

t

Y n
t

+

n∑
k=β(t)+1

σk(t)
(
F k
t + α

)
1 + τF k

t

(
τσSρSFk∆+Σk,:∆W

L(t)
t

)
.

Let us denote by Ỹt and S̃t, simulated sample paths of forward stock and stock prices under the

real measure, P. As W L(t)
t =W P

t and

∆W
S,L(t)
t = ∆WS,P

t +
µ− µLS(t)

σSΣY Y
∆,

we obtain from Equation (16) that
Ỹ n
t+∆−Ỹ n

t

Ỹ n
t

=
Y n
t+∆−Y n

t

Y n
t

+
(
µ− µLS(t)

)
∆ ,

S̃t = P (t, Tn)Ỹ
n
t .

(20)

Using this adjustment allows to simulate sample path of stock price under the real measure P.
As explained in the following section, we will combine asset simulations with the approximated
valuation formula of liabilities to measure the exposure to market risk.
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6 Asset-Liability management

The investment policy impacts �nancial performance and exposure to market risk. For an in-
surer, it is a matter of crucial importance to adapt this policy to their risk appetite. And for
a given exposure to risk, the insurer has to select the most performing investment strategy. In
this section, we de�ne the indicators of risk exposure and global performance, compliant with
the Solvency II regulation.

The benchmark portfolio, (At)t≥0, re�ects the performance of insurer's investments over time.

We denote by (It)t≥0, the insurer's total asset
1. We assume that the insurer's investment policy

is strictly the same as that of the benchmark portfolio. If we remember that CF
(d)
k and CF

(s)
k

are the cash-�ows paid at times Tk for k = 0, ..., g, the insurer's total asset at time t is linked to
cash-�ows by:

It = I0
At

A0
−

β(t)−1∑
k=0

(
1{Tk−1<τx≤Tk}CF

(d)
k + 1{Tk<τx}CF

(s)
k

) At

ATk

. (21)

Using this relation, we simulate sample paths of the insurer's asset under P, with the procedure
described in Section 5. In each of these scenarios, we approximate the best estimate, Lt, using
the closed-form formula (12). Without this formula, we would need to perform nested simu-
lations or to implement a least square Monte-Carlo (LSMC) method. Nested simulations are
computationally intensive and avoided in practice for this reason. The LSMC method is more
e�cient but it may lack of accuracy as emphasized in Hainaut and Akbaraly (2023).

The joint simulations of It and Lt allows us to compute the statistical distribution of the net
asset value (NAV), de�ned as the di�erence between the total asset and the best estimate.

NAVt := It − 1{β(t)−1<τx}Lt . (22)

The NAV is a performance measure which corresponds to the market value of future incomes
earned by the insurance company. In solvency II, the indicator of risk exposure is the solvency
capital requirement (SCR). This corresponds to the economic capital an insurance company
must hold to limit the probability of ruin to 0.5%, i.e. ruin would occur once every 200 years.
In solvency II, the SCR is the 0.5% percentile of the NAV distribution in one year, under the
real measure P. Interpreting the de�nition of the SCR in the same manner as Christiansen and
Niemeyer (2014), we de�ne the regulatory capital SCRreg as follows:

P (NAV0 −NAV1 ≥ SCRreg) = β . (23)

where β = 0.5% is the con�dence level. Note that we are neglecting the 1-year discount rate in
this formula. The SCR de�ned by this way is simply an approached value of the 0.5% 1-year
Value at Risk (VaR) of the NAV:

P
(
EP (NAV1 | F0)−NAV1 ≥ SCR1

)
= β . (24)

for a con�dence level of β=0.5% where the expectation is here evaluated under the real measure
P. The solvency capital calculated by this last formula is larger than SCRreg for any pro�table
insurance company if E (NAV1 | F0) > NAV0. As the solvency capital de�ned by equation (24)
is more conservative then the one obtained with the regulator's formula, we adopt it as de�nition
in the numerical illustrations.

1It is the total asset managed by the insurer. This is a portfolio managed as At but from which bene�ts are
withdrawn.
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In Solvency II, the insurance company should also ensure that its assessment of the overall
solvency needs is forward-looking, including a medium term or long-term perspective as appro-
priate. In the Own Risk and Solvency Assessment (ORSA), the regulator proposes to evaluate
the CSR as the capital needed to ensure the positivity of the NAV in 99.5% of cases. As in
Hainaut et al. (2018), we instead de�ne the SCRt as the t-year value at risk of NAVt:

P
(
EP (NAVt | Ft0)−NAVt ≥ SCRt

)
= 1− (1− β)t , (25)

where the con�dence level is adjusted year on year. Within this approach, the yearly probability
of unsolvency is β and the cumuluted probability over t years is 1−(1− β)t. We refer to Devolder
and Lebègue (2016) for additional explanations about this adjustment of the con�dence level.

We analyze in Section 8, the in�uence of the investment strategy on NAV and SCR for two
types of participating contracts: an endowment and a life annuity. But before, we need to
discuss the calibration of the hybrid stock-LMM.

7 Hybrid Equity-LMM calibration

Insurance contracts are valued under the risk-neutral measure; therefore, the hybrid equity-LMM
should be estimated from market prices of a basket of assets and derivatives such as swaptions.
We refer, for example, to Brigo and Mercurio (2007) for explanations about this procedure.
Calibrating under the risk-neutral measure ensures the absence of arbitrage. Nevertheless, for
long-term insurance contracts, the market may be illiquid, and calibration under the risk-neutral
measure may lead to distorted results or unreliable parameter estimates. Furthermore, mortality
risk is not hedgeable in �nancial markets, and adding (reasonable) safety margins to parameters
is one way to reduce exposure to this risk. On the other hand, using the real-world measure
allows you to incorporate historical data and market fundamentals, which might be valuable
for long-term strategic planning or scenario analysis. Parameters under P are also useful for
generating scenarios to compute the Solvency Capital Requirement (SCR). We refer the reader
to Vedani et al. (2017) for a discussion about the choice of model parameters for insurance
valuation and other pitfalls related to the incompleteness of insurance markets. Note also that
without access to market data such as swaption volatilities, parameter estimates under P, with
eventual safety margins, are approximations less sensitive to short-term market �uctuations or
liquidity constraints. This section details how to calibrate the hybrid equity-LMMmodel under P.

We rewrite forward rates in terms of time to maturity, noted δ, before �xing and we adopt
the notation

F (t, δi) = F (t, t+ δi, t+ δi + τ) ,

to lighten developments in this section (i.e. Ti−1 = t + δi and Ti = t + δi + τ). Under the ith

forward measure, the LMM equation becomes

d ln (F (t, δi) + α) = σ (δi) Σi,: dW
F(i)
t ,

where σ(.) : R+ → R+ and Σi,: is a p-vector function of i (may be seen as a function of i, to be
speci�ed). Both are parameterized and parameters are stored in a vector ψ.

Conjecture 2. Under the real measure, we assume that forward rates are stationary:

d ln (F (t, δi) + α) ≈ gidt+ σ (δi) Σi,; dW
P
t (26)

where gi depends only upon time to maturity. The forward stock prices, Y n
t = St

P (t,t+δn+τ) , is also

stationary, i.e.:

d lnY n
t = µY dt+ σS

(
ΣY F ΣY Y

)
dW P

t (27)
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Under these assumptions and for a small ∆, the varations of log-forward rates are:

ln (F (t+∆, δi) + α)− ln (F (t, δi) + α) (28)

≈ σ (δi) Σi,:

(
W P

t+∆ −W P
t

)
,

while the variation of log-forward stock price is:

lnY n
t+∆ − lnY n

t (29)

≈ σS
(
ΣY F ΣY Y

) (
W P

t+∆ −W P
t

)
.

Both variations are normal random variables. We use this property to estimate the model. We
assume that p = n (i.e. same number of Brownian motion than forward rates). We sample the
n forward rates at m + 1 equispaced times {s0, ..., sm}. The sampling interval is noted ∆. The
times to maturity before �xing are denoted by {δ1, ..., δn} and equal to δk = k τ . We sample
forward stock prices at same dates:

Y n
sj =

Ssj
P (sj , sj + δn + τ)

j = 1, ...,m

We set α exogenously (e.g. the absolute value of the minimum of libor rates over the estimation
period) and calculate the �rst order di�erences of log-shifted forward rates prices (the yield):

xj,k = ln (F (sj+1, δk) + α)− ln (F (sj , δk) + α)

for j = 1 . . .m and k = 1...n. The di�erence of log-forward stock prices are xj,,n+1 = lnY n
sj+1

−
lnY n

sj . From Eq. (28), The vector xj = (xj,k)k=1,...,n+1 is the realization of a multivariate normal

variable X. The observed covariance of xj 's is denoted C̃. If we note σ = (σ(δk))k=1,...,n(dim
n) and Σ = (Σk,:)k=1,...,n (dim. n× n), the covariance of X is equal to ∆C(ψ) where

C(ψ) = diag

(
σ
σS

)(
Σ 0

ΣY F ΣY Y

)(
Σ⊤ Σ⊤

Y F

0 Σ⊤
Y Y

)
diag

(
σ
σS

)
= diag

(
σ
σS

)(
ΣΣ⊤ ΣΣ⊤

Y F

ΣY FΣ
⊤ ΣY FΣ

⊤
Y F +ΣY Y Σ

⊤
Y Y

)
diag

(
σ
σS

)
Parameters ψ are chosen in order to �t at best the empirical covariance matrix of xj 's, noted
C̃(x). We compute ψ by minimizing the mean square error between empirical and theoretical
covariance matrix:

ψ = argmin
ψ

n∑
i=1

n∑
j=i

(
Ci,j(ψ)− C̃i,j(x)/∆

)2
.

Based on observed standard deviations of forward rates (see Figure 1), we parameterize σ(.) by
the following function

σ (δ) = (aδ + d) e−bδ + c , (30)

where a, c, d ∈ R+ and b ∈ R. The (k, j)th element of the matrix ΣΣ⊤ is the correlation coe�cient
between F (t, δk) and F (t, δj). We adopt the following model to smooth correlations:

Σk,:Σ
⊤
j,: = ρk,j = ρ∞ + (1− ρ∞) exp (|k − j|β(k, j)) , (31)

where ρ∞ ∈ R+and β(., .) is a function of remaining maturities before �xing of the forward rate:

β (k, j) = d1 − d2 max (k, j) .
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d1 and d2 ∈ R+. Based on observations (See Figure 2), the correlation between log-forward stock
prices and forward rates is modelled by the following function(

ΣY FΣ
⊤
Y F

)
k

= ρSFk = ρSFn (1− exp (−d3 − d4 (n− k))) . (32)

where d3, d4 ∈ R+. To ensure that(
ΣΣ⊤ ΣΣ⊤

Y F

ΣY FΣ
⊤ ΣY FΣ

⊤
Y F +ΣY Y Σ

⊤
Y Y

)
is well a correlation matrix, the following equation must be ful�lled:

ΣY FΣ
⊤
Y F +ΣY Y Σ

⊤
Y Y = 1 .

We infer from this constraint that ΣY Y =
√
1− ΣY FΣ⊤

Y F . We �t the hybrid stock-LMM to

1-year forward rates computed from Belgian state bonds (maturity up to 25 years), and CAC 40
log-returns over the period 1/12/2010 to 18/3/2024 (daily observations). Parameter estimates
are reported in Table 1. The average return of the stock indice is 7.56% and we round it to
8.00%, which is a reasonable estimate of the future return of this indice.

α 0.0305 d2 0.3200

a 0.0022 ρ∞ 0.1022

b -0.0711 σS 0.2999

c 0.2761 ρSF 0.3741

d 0.0001 d3 0.6117

d1 0.4158 d4 0.1489

µ = 0.08 (assumption)

Table 1: Parameter estimates, hybrid stock-LMM

Figure 1 Compares empirical standard deviations of forward rates to modelled ones, with respect
to time to maturity. Figure 2 presents empirical and modelled correlations between log-forward
rates and log-forward stock prices, with respect to time to maturity. These graphs con�rm that
functions (30) and (32) are appropriate.

Figure 1: Empirical and modelled standard deviations of forward rates with respect to time to
maturity
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Figure 2: Observed and modelled correlations between log-forward rates and log-forward stock
prices, with respect to time to maturity

8 Numerical analysis

We consider two 10�year contracts purchased by a 60-year old male individual. The �rst one is
an endowment with minimum death and life bene�ts equal to 100. Bene�ts are paid at the end of
year. The second product is a 10 year life annuity. We consider three guaranteed rates. Detailed
contract features are reported in Table 2. For each product, we consider three bond investment
policies: the �xed maturity, the constant duration buckets (FMB and CDB) and the cash-�ow
matching (CFM) strategies. We recall that the CDB strategy is the only strategy accepted by
the regulator for computing best estimates in Solvency II. The motivation for such a choice is
that insurance companies must simulate their investment on an ongoing basis even if liabilities
cash-�ows are in run-o�. Maturities of bonds involved in Equations (3) and (4) de�ning the
ηiu's are presented in Table 3. We consider various percentage of stocks, from 0% up to 100%
and the initial yield curve is the one of Belgian state bonds on the 18/3/2024. The survival
probabilities are computed with a Makeham model (See Appendix B) �tted to prospective male
Belgian mortality rates.

Endowment Annuity

Tg 10 Tg 10

x 60 x 60

rg 0.0%, 1.5%, 3.0% rg 0.0%, 1.5%, 3.0%

dk 100 dk 0

lk l9=100, l0,...,8 = 0 lk (1 + rg)
Tk 100

a
(0%)

10

, 100

a
(1.5%)

10

, 100

a
(3%)

10

Table 2: Features of the endowment and life annuity.

Bonds portfolio

FMB m1 12 years CDB m1 8 years

m2 16 years m2 12 years

Stock allocation

π from 0% to 100% by step of 5%

Table 3: Features of the benchmark portfolios.
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8.1 Valuation of best estimates

Table 5 presents the market values of endowments and life annuities, with three guarantees and
various investment strategies. These best estimates are computed with parameters of Table 1 and
with the closed-form expression of Proposition 4. The integral in the variance of the benchmark
portfolio, Equation (11), is computed numerically with a discretization step of 0.01. In order
to quantify the error induced by Conjecture 1, we evaluate the same contracts by running 1000
Monte-Carlo simulations under the Libor measure. Table 4 reports the average relative spread
between Monte-Carlo and (semi-) analytical best estimates. This error varies from 0.62% to
1.74%. In most of con�gurations, the relative errors are around 1.00%, which is an acceptable
accuracy for an ALM study. Figure 3 reveals that analytical best estimates are systematically
lower than Monte-Carlo values. This observation is relevant with the assumption in Equation
(1) which implicitely decreases the benchmark asset volatility. As call options embedded into
contracts are proportional to this volatility, undervaluing it is at the origin of the underestimation
of best estimates. In the rest of this section, liability values are exclusively computed with the
approximated closed-form expression.

Average relative errors in %

Endowment, rg Annuity, rg
Bond strategy 0.0% 1.5% 3.0% 0.0% 1.5% 3.0%

FMB 1.173 1.486 1.512 1.04 1.037 0.871

CDB 1.292 1.656 1.743 1.077 1.104 0.953

CFM 0.94 1.067 1.151 0.669 0.674 0.623

Table 4: Average relative errors between prices

Figure 3: Best estimates with rg = 1.5% and FMB strategy by Monte-Carlo (MC) simulations
and closed-form approximation (CF)

Figure 4 shows the best estimates of the Endowment and life annuity for π that ranges from
0% to 50% and FMB, CDB and CFM strategies. This graph emphasizes the importance of the
bond investment policy on the fair value of liabilities. For asset mixes with less than 20% of
stocks, the lowest best estimates are obtained with a cash-�ow matching allocation. Depending
on the type of products, the worst strategy is either the CDB or the FMB policy. Globally,
the performance depends on the mismatch between bonds and liabilities maturities. The CDB
strategy, that is the only legal one in Solvency II, is then not optimal from the insurer's point
of view. Figure 5 presents the best estimates of the two products for the considered guaranteed
rates (rg equal to 0%, 1.5% and 3.0%). This graph, as the previous one emphasizes the impact
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of diversi�cation between stocks and bonds on liability values. Due to the limited correlation
between stocks and forward rates, investing between 10% and 20% of the asset in stocks allows
minimizing the best estimates.

Figure 4: Best estimates with rg = 1.5%. FMB, CDB and CFM strategies

Figure 5: Best estimates for various guarantees, with FMB strategy
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Endowment Annuity
FMB FMB

π / rg 0.0% 1.5% 3.0% 0.0% 1.5% 3.0%

0.0 100.13 101.07 105.75 99.82 101.51 104.76

0.1 100.06 100.65 104.92 99.3 100.71 103.81

0.2 100.11 101.12 105.84 99.1 100.5 103.61

0.3 100.51 102.44 107.9 99.28 100.94 104.19

0.4 101.46 104.36 110.43 99.89 101.91 105.32

0.5 102.89 106.6 113.13 100.88 103.24 106.8

CDB CDB

π / rg 0.0% 1.5% 3.0% 0.0% 1.5% 3.0%

0.0 100.3 101.84 107.02 99.32 100.95 104.19

0.1 100.12 101.15 105.91 98.9 100.23 103.31

0.2 100.17 101.4 106.33 98.82 100.14 103.22

0.3 100.54 102.54 108.04 99.11 100.72 103.94

0.4 101.44 104.33 110.39 99.81 101.81 105.21

0.5 102.83 106.51 113.03 100.86 103.21 106.76

CFM CFM

π / rg 0.0% 1.5% 3.0% 0.0% 1.5% 3.0%

0.0 100.02 100.05 100.54 98.22 98.49 100.68

0.1 100.01 100.09 103.06 98.21 98.69 101.24

0.2 100.09 101.06 105.76 98.45 99.56 102.56

0.3 100.68 102.86 108.48 99.12 100.83 104.11

0.4 101.83 104.99 111.2 100.11 102.28 105.75

0.5 103.35 107.26 113.91 101.31 103.8 107.42

Table 5: Best estimates, endowment and life annuity

8.2 Asset-liability management indicators

Tables 6 and 7 present ALM indicators for the two contracts, with a guarantee rg of 1.5%, for
various asset allocations. We have assumed that the insurer's total asset is equal to I0 = 110.

In Figures 6 and 7, we have plotted the expected 1-year NAV's with respect to the SCR, com-
puted as the 0.5% VaR of 1-year NAV's. These results are obtained by running 10,000 simulations
under P, over a one-year time horizon. Asset sample paths are simulated by time steps of size 0.02.

We observe that the SCR widely depends on the fraction of stocks held in the portfolio. For both
insurance products, it ranges from 5% up to 22% for a benchmark portfolio with 55% of stocks.
We again observe a diversi�cation e�ect. The SCR is respectively minimized with 10% and 15%
of stocks for the endowment and life annuity. These results are aligned with market practices
of European insurers that invest between 5% and 15% of their assets in equity. The bond in-
vestment policy has a limited impact on the endowment SCR. On the contrary, the cash-�ow
matching strategy allows reducing the SCR of the life annuity by half (from 10% to less than
5%). Nevertheless, Solvency II imposes in simulations, a reinvestment policy of bonds based on
a constant duration. This option yields the highest best estimates and SCR compared to other
policies and is suboptimal for the insurer.

Figures 6 and 7 reveal the importance of the bond allocation on expected NAVs. As both
contracts include participation in pro�ts above the guaranteed rate, increasing the fraction of
stocks does not raise the expected NAV. We even observe a small decline for portfolios mas-
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sively invested in stocks. For both products, the highest expected NAVs are obtained with CFM
strategies.

Figure 6: EP(NAV1|F0) versus SCR1, endowment contract. π range : 0% to 55%

Figure 7: EP(NAV1|F0) versus SCR1, life annuity. π range : 0% to 55%

Figures 8 and 9 display the solvency ratios, EP(NAV1|F0)
SCR1

with respect to SCR ratios, SCR1
L0

.
As the NAV is the equity of the product balance sheet, the solvency ratio must be above one
to ensure the positivity of NAV in 99.5% of scenarios. This criterion is ful�lled for portfolios
with less than 40% and 35% of stocks for the endowment and annuity, respectively. The SCR
ratio is the percentage of equity that shareholders �nance for guaranteeing the solvency. As
the cost of equity is higher than the cost of other funding sources, insurers must select the
asset allocation aligned with their capacity to raise and remunerate capital. The annuity and
endowment respectively require a capital of up to 16% and 14% of best estimates for a portfolio
with 55% of stocks. If we look to Tables 6 and 7, we observe that the highest solvency ratios and
lowest SCR ratios are obtained with cash-�ow matching strategies and respectively 20% and 10%
of stocks for the endowment and the annuity. The CDB strategy, which is imposed in Solvency
2, signi�cantly reduces the solvency ratio and rises the SCR ratio. This investment policy is
clearly not favorable for the insurer.
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Figure 8: EP(NAV1)
SCR1

versus SCR1
L0

, endowment contract. π range : 0% to 55%

Figure 9:
EP(NAV1y)

SCR versus SCR
L0

, life annuity. π range : 0% to 55%

Figure 10 presents the expected NAV's at intermediate times before expiry. We consider in
this illustration a guarantee rg = 1.5% and an asset allocation with 20% of stocks. The graphs
reveal that the NAV's grow linearly and whatever the time horizon, the CFM strategy leads to
the highest NAV's. Figure 11 shows the evolution of SCR's, computed with formula (24).With
the CDB policy, the time to expiry of bonds in the portfolio is nearly constant whereas the time
to expiry of liabilities gets shorter with time. This increasing mismatch of durations between
assets and liabilities raises the exposure to interest risk. This explains why the SCRs computed
with the CDB strategy are increasing functions of time. The CFM strategy is the least expensive
in terms of capital. Nevertheless, we observe a slight increase of SCRs over time, mainly due to
the global increase of corresponding NAVs (as NAVs are larger in absolute value, their standard
deviations, and then SCRs, are also larger).

Figure 10: EP (NAVt), endowment contract.
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Figure 11: SCRt, life annuity.

9 Conclusions

Based on a hybrid equity-Libor market model, we propose a framework for integrating the bond
investment strategy into the valuation of participating insurances. Under the common hypothesis
of stationarity, we provide a semi-analytical approximation for the best estimates. This closed-
form expression, combined with Monte Carlo simulations, allows us to compute risk management
indicators such as the NAV or the CSR. We also provide a method for generating asset sample
paths and a calibration method from time series.

The comparison of best estimates obtained by the analytical formula and Monte Carlo simu-
lations reveals that the closed-form approximation slightly underestimates the real values. This
observation is relevant to the fact that Conjecture 1 implicitly decreases the asset volatility. As
call option prices are proportional to this volatility, undervaluing it explains the underestimation
of best estimates.

Our numerical results highlight the importance of the bond investment policy on best estimates.
For both endowments and annuities, a cash-�ow matching strategy proves to be the most e�cient
in reducing liability fair values. Additionally, we observe the impact of diversi�cation between
stocks and bonds. Due to the limited correlation between equity and forward rates, allocating
between 10% and 20% of the asset in stocks decreases best estimates.

Without an analytical expression for liability values, we would need to conduct simulations within
simulations or utilize the least squares Monte Carlo method to compute the SCR. However, the
combination of primary Monte Carlo simulations under P with the closed-form approximation
signi�cantly reduces computation time. Furthermore, the approximation proves to be accurate
enough for quantifying the in�uence of the investment strategy on the NAV and SCR. The ALM
study clearly demonstrates that a cash-�ow matching policy improves shareholder wealth cre-
ation and reduces the SCR. Additionally, we observe that investing between 10% and 20% in
stocks reduces the SCR through diversi�cation.

Appendix A

The next proposition provides the dynamics of forward rates under di�erent forward equivalent
measures:
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Endowment, FMB

π L0 NAV0 EP (NAV1y) SCR
EP(NAV1y)

SCR
SCR
L0

0.0 100.06 9.94 10.3 2.41 4.27 0.02

0.05 100.02 9.98 10.33 2.27 4.56 0.02

0.1 100.12 9.88 10.36 2.16 4.79 0.02

0.15 100.57 9.43 10.38 2.08 5.0 0.02

0.2 101.32 8.68 10.4 2.06 5.04 0.02

0.25 102.27 7.73 10.4 2.2 4.73 0.02

0.3 103.32 6.68 10.4 3.08 3.37 0.03

0.35 104.44 5.56 10.37 5.06 2.05 0.05

0.4 105.61 4.39 10.32 7.43 1.39 0.07

0.45 106.8 3.2 10.24 9.86 1.04 0.09

0.5 108.02 1.98 10.15 12.2 0.83 0.11

Endowment, CDB

π L0 NAV0 EP (NAV1y) SCR
EP(NAV1y)

SCR
SCR
L0

0.0 103.22 6.78 8.45 2.41 3.5 0.02

0.05 102.84 7.16 8.51 2.05 4.15 0.02

0.1 102.63 7.37 8.55 2.1 4.07 0.02

0.15 102.61 7.39 8.57 2.59 3.31 0.03

0.2 102.82 7.18 8.57 3.48 2.46 0.03

0.25 103.27 6.73 8.56 4.59 1.86 0.04

0.3 103.94 6.06 8.53 5.91 1.44 0.06

0.35 104.78 5.22 8.48 7.48 1.13 0.07

0.4 105.74 4.26 8.42 9.05 0.93 0.09

0.45 106.8 3.2 8.34 10.72 0.78 0.1

0.5 107.91 2.09 8.25 12.53 0.66 0.12

Endowment, CFM

π L0 NAV0 EP (NAV1y) SCR
EP(NAV1y)

SCR
SCR
L0

0.0 99.94 10.06 10.3 2.38 4.32 0.02

0.05 99.89 10.11 10.33 2.26 4.58 0.02

0.1 99.97 10.03 10.35 2.16 4.79 0.02

0.15 100.41 9.59 10.38 2.08 4.98 0.02

0.2 101.18 8.82 10.4 2.07 5.03 0.02

0.25 102.13 7.87 10.42 2.11 4.94 0.02

0.3 103.2 6.8 10.42 2.58 4.05 0.02

0.35 104.34 5.66 10.41 4.68 2.22 0.04

0.4 105.52 4.48 10.37 7.31 1.42 0.07

0.45 106.72 3.28 10.3 9.88 1.04 0.09

0.5 107.95 2.05 10.21 12.43 0.82 0.12

Table 6: Risk management indicators for the endowment
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Annuity, FMB

π L0 NAV0 EP (NAV1y) SCR EGN1
SCR
L0

0.0 99.8 10.2 10.76 9.16 1.17 0.09

0.05 99.6 10.4 10.9 8.19 1.33 0.08

0.1 99.53 10.47 11.01 7.52 1.46 0.08

0.15 99.66 10.34 11.09 7.3 1.52 0.07

0.2 99.97 10.03 11.13 7.23 1.54 0.07

0.25 100.44 9.56 11.14 7.56 1.47 0.08

0.3 101.02 8.98 11.12 8.58 1.3 0.08

0.35 101.69 8.31 11.07 9.69 1.14 0.1

0.4 102.41 7.59 10.99 11.35 0.97 0.11

0.45 103.17 6.83 10.88 12.99 0.84 0.13

0.5 103.97 6.03 10.75 14.86 0.72 0.14

Annuity, CDB

π L0 NAV0 EP (NAV1y) SCR EGN1
SCR
L0

0.0 101.55 8.45 9.34 9.44 0.99 0.09

0.05 101.18 8.82 9.5 8.51 1.12 0.08

0.1 100.93 9.07 9.63 7.94 1.21 0.08

0.15 100.83 9.17 9.73 7.55 1.29 0.07

0.2 100.88 9.12 9.79 7.62 1.29 0.08

0.25 101.09 8.91 9.82 7.95 1.24 0.08

0.3 101.46 8.54 9.83 9.0 1.09 0.09

0.35 101.96 8.04 9.8 9.95 0.98 0.1

0.4 102.57 7.43 9.74 11.63 0.84 0.11

0.45 103.24 6.76 9.66 13.37 0.72 0.13

0.5 103.97 6.03 9.56 14.82 0.65 0.14

Annuity, CFM

π L0 NAV0 EP (NAV1y) SCR EGN1
SCR
L0

0.0 98.56 11.44 11.91 3.14 3.79 0.03

0.05 98.55 11.45 11.96 2.9 4.13 0.03

0.1 98.74 11.26 11.98 2.81 4.26 0.03

0.15 99.15 10.85 11.97 3.37 3.55 0.03

0.2 99.71 10.29 11.92 4.37 2.72 0.04

0.25 100.37 9.63 11.84 6.04 1.96 0.06

0.3 101.09 8.91 11.73 8.12 1.44 0.08

0.35 101.84 8.16 11.6 10.14 1.14 0.1

0.4 102.62 7.38 11.46 12.39 0.92 0.12

0.45 103.42 6.58 11.3 14.6 0.77 0.14

0.5 104.22 5.78 11.13 16.76 0.66 0.16

Table 7: Risk management indicators for the endowment
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Endowment

EP (NAVt) SCRt

t FMB CDB CFM FMB CDB CFM

1.0 10.4 8.57 10.4 2.06 3.48 2.07

2.0 10.76 9.01 10.78 2.81 5.20 2.76

3.0 11.1 9.44 11.14 3.49 6.81 3.3

4.0 11.42 9.86 11.45 4.01 8.02 3.86

5.0 11.79 10.35 11.83 4.33 9.52 4.06

6.0 12.2 10.82 12.24 4.55 10.98 4.41

7.0 12.65 11.28 12.69 4.69 12.69 4.39

8.0 13.17 11.75 13.22 4.63 14.89 4.37

9.0 13.73 12.15 13.77 4.44 17.23 4.16

Annuity

EP (NAVt) SCRt

t FMB CDB CFM FMB CDB CFM

1.0 11.13 9.79 11.92 7.23 7.62 4.37

2.0 11.69 10.46 12.3 9.42 10.7 6.34

3.0 12.17 11.06 12.67 10.31 12.14 7.14

4.0 12.56 11.55 13.05 10.71 13.57 7.34

5.0 12.99 12.06 13.52 10.52 14.01 7.41

6.0 13.44 12.55 14.04 10.3 15.02 7.4

7.0 13.94 13.01 14.61 10.11 15.29 7.42

8.0 14.49 13.5 15.27 9.9 15.55 7.07

9.0 15.1 14.0 15.99 9.44 15.61 7.03

Table 8: Expected NAV and SCR for times t from 1 to 9 years, π = 20%.
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Proposition 6. The dynamics of F j
t under the measure F(i) are the following. If j < i,

dF j
t(

F j
t + α

) = −
i∑

k=j+1

τkσk(t)σj(t)ρj,k
(
F k
t + α

)
1 + τkF

k
t

dt+ σj(t) Σj,: dW
F(i)
t (33)

If j > i,

dF j
t(

F j
t + α

) = +

j∑
k=i+1

τkσk(t)σj(t)ρj,k
(
F k
t + α

)
1 + τkF

k
t

dt+ σj(t) Σj,: dW
F(i)
t (34)

Appendix B

The curve of survival probabilities is described by a Makeham's model:

tp
µ
x = exp−

∫ x+t

x

(
a(µ) + b(µ)

(
c(µ)
)s)

ds

= exp(−a(µ)t) exp

(
− b(µ)

ln c(µ)

((
c(µ)
)x+t

−
(
c(µ)
)x))

.

where a(µ), b(µ), c(µ) ∈ R+. These parameters are obtained by least square minimization of
spreads between prospective and model survival probabilities. Prospective survival probabilities
are computed with a Lee-Carter model �tted to Belgian mortality rates from 1950 to 2020 for 0
to 105 years, male population. Estimated parameters are provided in Table 9.

Parameters

a(µ) 1.006349e-03

b(µ) 2.790903e-07

c(µ) 1.152292

Table 9: Mortality parameters, Belgian male mortality rates, year 2020.
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