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In absence of a closed form expression such as in the Heston model, the option
pricing is computationally intensive when calibrating a model to market quotes. this
article proposes an alternative to standard pricing methods based on physics-inspired
neural networks (PINNs). A PINN integrates principles from physics into its learn-
ing process to enhance its e�ciency in solving complex problems. In this article, the
driving principle is the Feynman-Kac (FK) equation, which is a partial di�erential
equation (PDE) governing the derivative price in the Heston model. We focus on the
valuation of European options and show that PINNs constitute an e�cient alterna-
tive for pricing options with various speci�cations and parameters without the need
for retraining.

Keywords: neural networks, variable annuities, Feynman-Kac equation, life in-
surance

1 Introduction

A physics-inspired neural network (PINN) incorporates principles from physics into its learning
process, enhancing its e�ciency in solving complex scienti�c problems. Compared to existing
approaches, PINNs reduce the reliance on large datasets and provide accurate predictions even
with sparse or noisy measurements. Researchers have employed PINNs to address a diverse range
of problems, including �uid dynamics, solid mechanics, heat transfer, and quantum mechanics.

In this study, we demonstrate that PINNs can be used for the valuation of options in the Heston
model. In this framework, the stock price is governed by a geometric Brownian motion with
stochastic volatility. Options are valued either by discrete Fourier transform (FFT) or by Monte
Carlo simulations. During the calibration phase, the parameters of the Heston model are ad-
justed to best replicate market quotes of options. This step requires multiple option valuations
and is therefore computationally intensive. To expedite the process, we propose a neural network
model that can instantaneously price options with various features and parameters. The network
is trained to solve the Feynman-Kac equation in multiple con�gurations and is called PINN for
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this reason.

In summary, a PINN is an approximate solution of a non-linear partial di�erential equation
(PDE) that describes the dynamics of a model. The neural network is trained by minimizing
the approximation error at sampled points within the PDE domain and on its boundaries. This
method originates from the work of Lee and Kang (1990) and has since been applied to various
non-linear PDEs. For example, Raissi et al. (2019) used PINNs for solving two main classes of
mathematical problems: data-driven solutions and data-driven discovery of partial di�erential
equations. In the �eld of physics, Carleo and Troyer (2017) and Cai (2018) employed PINNs to
accurately approximate quantum many-body wave functions. For further information and recent
developments and applications of PINNs, we recommend referring to Cuomo et al. (2022) for a
comprehensive literature review.

The literature on the valuation of �nancial derivatives using neural networks is relatively re-
cent. Hejazi and Jackson (2016) developed a neural network to price and estimate the 'Greeks'
for a large portfolio of variable annuities. Doyle & Groendyke (2019) priced and hedged equity-
linked contracts using neural networks. They constructed a dataset of variable annuity prices
with various features through Monte Carlo simulations. The neural network was then esti-
mated by minimizing prediction errors using a scaled conjugate gradient descent. Sirignano and
Spiliopoulos (2018) introduced a Deep Galerkin Method (DGM) based on a network architecture
inspired by long short-term memory (LSTM) neural cells. Their approach was tested on a class
of high-dimensional free boundary partial di�erential equations (PDEs) and on high-dimensional
Hamilton-Jacobi-Bellman PDEs and Burgers' equation. Gatta et al. (2018) evaluated a suitable
PINN for the pricing of American multi-asset options and proposed a novel algorithmic technique
for free boundary training. Al-Aradi et al. (2022) extended the DGM in several directions to
solve Fokker-Planck and Hamilton-Jacobi-Bellman equations. More recently, Jiang et al. (2023)
demonstrated, under mild assumptions, the convergence of the Deep Galerkin and PINNs method
for solving PDEs. Glau and Wunderlich (2022) formalized and analyzed the deep parametric
PDE method for solving high-dimensional parametric partial di�erential equations.

A close alternative to PINN is developed in Weinan et al. (2017), where they solve parabolic
PDEs in high dimensions using neural networks connected to BSDEs. This approach employs
two separate networks for the solution and its gradient. They apply their algorithm to price op-
tions in a multivariate Black and Scholes model. Beck et al. (2019) introduce a similar method
for solving high-dimensional PDEs based on a connection between fully nonlinear second-order
PDEs and second-order backward stochastic di�erential equations. They illustrate the accuracy
of their method with the Black and Scholes and Hamilton-Jacobi-Bellman equations. Using this
principle, Barigou and Delong (2022) evaluate equity-linked life insurances with neural networks
by solving a backward stochastic di�erential equation (BSDE). Unlike PINNs, BSDE methods
rely on two networks instead of one, and any modi�cation of contract speci�cations requires
retraining.

Another valuation approach based on neural networks relies on simulations. Buehler et al.
(2019) present a framework for pricing and hedging derivatives using neural networks that are
trained on simulated sample paths of risk factors. In this case, the neural network approximates
the optimal investment strategy, and the value is determined by averaging discounted payo�s
obtained through simulations. Similarly, Horvath et al. (2021) studied the performance of deep
hedging under rough volatility models, while Biagini et al. (2023) developed a neural network
approximation using simulations for the superhedging price and replicating strategy. As with
BSDE approaches, any modi�cation of contract speci�cations requires retraining. For a com-
prehensive review of algorithms based on neural networks for stochastic control and PDEs in
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�nance, we recommend referring to Germain et al. (2021).

In the �nancial and insurance industry, four dominant numerical methods are commonly used for
pricing contingent claim contracts: Monte-Carlo (MC) simulations, bi- or trinomial trees, PDE
solving, or Fast Fourier Transform (FFT) inversion. As the calibration of a model needs multiple
valuations of options with di�erent features, these methods are computationally intensive. In
contrast, the valuation using a PINN, once it is trained, becomes nearly instantaneous. Another
noteworthy feature is the ability to parameterize a PINN with model parameters and contract
features such the maturity. This provides a quick solution pricing without the need to retrain
the network for each setting. This presents a signi�cant advantage compared to BSDE or deep
hedging approaches.

This article makes the following contributions. Firstly, we introduce a speci�c type of neu-
ral network in which intermediate layers are fed with both the output of the previous layer and
the initial input vector. Such a network better captures the non-linear behavior of option prices
compared to classical feed-forward networks. Secondly, we develop a scaled and centered version
of the Feynman-Kac equation ruling option prices in the Heston model. Thirdly, we train the
network for various maturities of options and for a wide range of Heston parameters. In this
sense, our model is o�ers a signi�cant �exibility compared to BSDE or deep hedging methods,
which require retraining for each speci�c setting of Heston parameters.

2 Heston model in a nutshell

We consider a �nancial market composed of two assets. The account earns a constant risk
free rate r. The stock price, denoted by (St)t≥0, is ruled by a geometric Brownian di�u-
sion with a stochastic variance, (Vt)t≥0. These price and variance processes are de�ned on a
probability space (Ω,F ,P) associated to two independant Brownian motions under P, noted

W̃ t =
(
W̃

(1)
t , W̃

(2)
t

)⊤
t≥0

. The state variables (St, Vt) are driven by the following stochastic dif-

ferential equations (SDE's):

d

(
St
Vt

)
=

( (
r + νS

√
Vt
)
St

κ
(
γ − νV

σ
√
Vt

κ − Vt

) ) dt+ ( St
√
VtΣ

⊤
S

σ
√
VtΣ

⊤
V

)
dW̃ t , (1)

where κ, γ and σ are in R+. ΣS , ΣV are vectors such that Σ =
(
Σ⊤
S ,Σ

⊤
V

)
is the (upper) Choleski

decomposition of the correlation matrix:

Σ =

(
Σ⊤
S

Σ⊤
V

)
=

(
ρ
√
1− ρ2

0 1

)
,

(
1 ρ
ρ 1

)
= ΣΣ⊤ ,

where ρ ∈ (−1, 1) is the correlation between the stock price and its variance. The parameters

νS , νV tune the risk premiums
(
νS

√
Vt , − νV

σ
√
Vt

κ

)
, of price and variance processes. We assume

that costs of risk, noted θ = (θ1, θ2)
⊤ , are constant, i.e. the Brownian motions with drift under

P,

dW
(j)
t = dW̃

(j)
t + θjdt , j = 1, 2.

are Brownian motions under the risk neutral measure, Q. To keep identical dynamics under P
and Q, the risk premium parameters, stored in a vector θ = (θ1, θ2)

⊤ are such that

νS = ρθ1 +
√

1− ρ2θ2 ,

νV = −θ2 .
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Under the risk neutral measure Q, the stock price and variance processes are therefore ruled by
the following SDE's:

d

(
St
Vt

)
=

(
r St

κ (γ − Vt)

)
dt+

(
St
√
VtΣ

⊤
S

σ
√
VtΣ

⊤
V

)
dW t , (2)

whereW t =
(
W

(1)
t ,W

(2)
t

)⊤
t≥0

. In the next section, we recall the valuation equation ruling option

prices.

3 Valuation equation, European payo�s

We consider a European �nancial derivative expiring at time T and promising a general payo� ,
H(ST ), function of stock price and variance at maturity. The fair value, denoted by Lt is equal
to the expected discounted cash-�ows under the risk neutral measure Q:

Lt = E
(
e−r(T−t)H(ST ) | Ft

)
.

In the numerical illustration, we consider a put option with a strike priceK. For such a derivative,
the payo� has the following form

H (ST ) := (K − ST )+ .

A physics-inspired neural network (PINN) integrates principles from physics, including partial
di�erential equations (PDEs) governing the behavior of state variables. In a �nancial context,
we adopt the Feynman-Kac (FK) equation as our guiding principle. The FK equation is a PDE
satis�ed by all assets traded in an arbitrage-free market. In this section, we construct this
equation for the valuation of European options in the Heston model. In the following section,
we utilize a neural network to solve it for various market parameters and contract features. To
lighten future developments, we denote the vector of state variables by

yt = (St, Vt)
⊤ .

Under the risk neutral measure Q, this multivariate process is ruled by the following SDE:

dyt = µy(t,yt)dt+Σy(t,yt)dW t ,

where µy(.) is a vector of dimension 2 and Σy(.) is a 2× 2 matrix:

µy(t,yt) =

(
r St

κ (γ − Vt)

)
, Σy(t,yt) =

(
St
√
VtΣ

⊤
S

σ
√
VtΣ

⊤
V

)
.

We emphasize the dependence to parameters by denoting the contract price as follows:

Lt = V (t,yt | r, κ, γ, σ, ρ, T ) .

Under the assumption of arbitrage-free market, all traded securities, including derivatives, earn
on average the risk free rate, i.e. :

E (dLt+ | Ft) = Lt r dt . (3)

Let us respectively denote the gradient and the Hessian of V (.) with respect to y by ∇yV and
Hy(V ):

∇yV =

(
∂SV
∂V V

)
, Hy(V ) =

(
∂SSV ∂SV V
∂SV V ∂V V V

)
.
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Applying the Itô's lemma to V (.) allows us to rewrite (3) as a partial di�erential valuation
equation:

0 =∂tV − r V + µy(t,yt)
⊤∇yV (4)

+
1

2
tr
(
Σy(t,yt)Σy(t,yt)

⊤Hy(V )
)
,

where tr(.) is the trace operator. This last expression is called the Feynman-Kac (FK) equation.
The boundary constraint on V (.) at expiry is equal to

V (T,yT | r, κ, γ, σ, ρ, T ) = H (ST ) . (5)

For most of current European payo�s, the option value if the stock price falls to zero is simply
the discounted value of a constant payo�. In this case, we have a lower boundary constraint on
V (.):

V
(
t, (0, Vt)

⊤ | r, κ, γ, σ, ρ, T
)

= e−r(T−t)H (0) . (6)

We approximate the solution of the FK equation (4) using a neural network that takes as input
the time, state variables, and parameters of the Heston model. The mathematical de�nition of a
neural network is revisited in the following section, but it's worth noting that a neural network
employs bounded activation functions, such as sigmoid or hyperbolic tangents. To mitigate
convergence issues associated with the vanishing gradient problem, we standardize and scale the
network's inputs. This preprocessing step slightly modi�es the FK equation. Let us de�ne the
vectors a, b ∈ R2 as follows

a = (aS , aV )
⊤ , (7)

b = (bS , bV )
⊤ .

a and b are chosen to normalize a random sample of state variables. This point is discussed in
the next section. The vector of centered and scaled state variables is denoted by

ỹt = a+ b⊙ yt , (8)

where ⊙ is the elementwise product. In a similar manner, we center and scale the time with
coe�cients ah and bh that will depends on the horizon of valuation. The centered scaled time
and durations are de�ned as follows {

t̃ = ah + bht ,

T̃ = ah + bhT .
(9)

The normalized state variables, ỹt =
(
S̃t, Ṽt

)
are ruled by the SDE:

dỹt = µỹ(t, ỹt)dt+Σỹ(t, ỹt)dW t ,

where µỹ(.) is a 2-vector and Σỹ(.) is a 2×2 matrix:

µỹ(t, ỹt) =

 r
(
S̃t − aS

)
κ
(
bV γ + aV − Ṽt

)  , Σỹ(t, ỹt) =


(
S̃t − aS

)√
Ṽt−aV
bV

Σ⊤
S

σ

√
bV

(
Ṽt − aV

)
Σ⊤
V

 .

The value of the contract may be seen as a function of time and rescaled state variables, Lt =
V (t̃, ỹt | r, κ, γ, σ, ρ, T̃ ). The valuation equation (4) is then rewritten in rescaled form:

0 =bh ∂t̃V − r V + µỹ(t, ỹt)
⊤∇ỹV (10)

+
1

2
tr
(
Σỹ(t, ỹt)Σỹ(t, ỹt)

⊤Hỹ(V )
)
,
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where ∇ỹV and Hỹ(V ) are respectively the gradient and the Hessian of V with respect to stan-
dardized state variables, ỹ. The rescaled version of the terminal and lower boundary constraints
(10) and (6) are:

V
(
T̃ , ỹT | r, κ, γ, σ, ρ, T̃

)
= H

(
S̃T − aS
bS

)
, (11)

V

(
t̃,
(
aS , ṼT

)⊤
| r, κ, γ, σ, ρ, T̃

)
= e

−r
(T̃−t̃)
bh H (0) . (12)

The next section explains how to solve Eq. (10) with a neural network.

4 Neural networks, European payo�s

We approximate the value function solving Equation (10) using a particular type of neural
network. This network takes as input a vector of dimension 9, denoted by z, containing the
scaled time, state variables and parameters:

z :=
(
t̃, ỹt, r, κ, γ, σ, ρ, T̃

)⊤
. (13)

There is no systematic procedure for determining the optimal structure of a neural network.
As proven by Hornik (1991), we know that single-layer neural networks can approximate reg-
ular functions arbitrarily well, but achieving reasonable accuracy may require a high number
of neurons. An alternative approach is provided by feed-forward networks, where information
�ows forward through several neural layers. However, these networks often struggle to replicate
non-linear functions with a limited number of layers. To address this challenge, Sirignano and
Spiliopoulos (2018) proposed a variant of LSTM called the Deep Galerkin Network. While this
structure replicates prices e�ectively, its calibration is time-consuming due to the complexity of
neural cells.

In our case, we adopt a simpler architecture where intermediate layers receive inputs from the
previous layer and the initial input vector. Figure 1 illustrates the structure of such networks,
featuring 'skip connections.' This model falls into the category of residual neural networks, which
have been successfully applied in various deep learning applications.

Figure 1: Feed forward network with skip connections toward intermediate layers.

De�nition Let l, n0, n1, ..., nl ∈ N be respectively the number of layers and neurons in each
layer. n0 is also the size of input vector. The activation function of layer k = 1, 2, ..., l is noted
ϕk(.) : R → R. Let C1 ∈ Rn1 ×Rn0 ,c1 ∈ Rn1 , Ck ∈ Rnk ×Rn0+nk−1 , ck ∈ Rnk for k = 2, ..., l−1,
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Cl ∈ Rnl ×Rnl−1 ,cl ∈ Rnl be neural weights de�ning the input, intermediate and output layers.
We de�ne the following functions

ψk(x) = ϕk (Ckx+ ck) , k = 1, l

ψk(x, z) = ϕk

(
Ck

(
x

z

)
+ ck

)
, k = 2, ..., l − 1

where activation functions ϕk(.) are applied componentwise. The neural network is a function
F : Rn0 → Rnl de�ned by

F (z) = ψl ◦ ψl−1 (., z) ... ◦ ψ2 (., z) ◦ ψ1(z) .

After having chosen a network architecture, the model is trained by minimizing a loss function
that is proportional to errors of approximation. This error is measured by replacing V (.) with
F (.) in the scaled FK equation (10), at random points in the domain.

At time t ∈ [0, T ], the domain of the state vector, yt = (St, Vt)
⊤is R+2. We approximate

this domain by a closed convex subspace:

Dy : [Sl, Su]× [Vl, Vu] .

In order to �t the neural network, we draw a sample of nD realizations of yt in Dy, at random
times. We also sample parameters (rj , κj , γj , σj , ρj , Tj)j=1,...,,nD

under the constraints:
rj ∈ [rl, ru] , κj ∈ [κl, κu] ,

γj ∈ [γl, γu] , σj ∈ [σl, σu] ,

ρj ∈ (−1, 1) , Tj ∈ [0, Tmax] ,

tj ≤ Tj .

The set of sampled state variables and parameters is noted SD =
(
tj ,yj , rj , κj , γj , σj , ρj , Tj

)
j=1,...,nD

.

We next center and scale state variables and times. The mean and standard deviation of sampled
state variables are computed with the standard formulas:

ȳ =
1

nD

nD∑
j=1

yj , Sy =

√√√√ 1

nD − 1

nD∑
j=1

(
yj − ȳ

)2
.

The scaling vectors (7) are de�ned by a = − ȳ
Sy

and b = 1
Sy

. For 1, ..., nD, we de�ne ỹj =

a + b ⊙ yj . The times, contract and bond maturities are also rescaled with relations (9) and
coe�cients

ah = −1
2 , bh =

1

Tmax
.

The set of sampled parameters and normalized state variables in the interior domain of the
Feynman-Kac equation, is denoted by:

S̃D =
(
t̃j , ỹj , rj , κj , γj , σj , ρj , T̃j

)
j=1,...,nD

.

During the training phase, the error of approximation is measured for all points of this sample
sets with the scaled FK equation (11). The error at expiry is measured with another sample set,
denoted by S̃T , of nT realizations of state variables and parameters:

S̃T =
(
ỹk, rk, κk, γk, σk, ρk, T̃k

)
k=1,...,nT

.
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Let us denote by Θ, the vector containing all neural weights (Ck, ck)k=1,...,l. At points of S̃D, we
de�ne for j = 1, ..., nD, the error in Equation (10) when V is replaced by the neural network as
follows:

eDj (Θ) = bh ∂t̃jF − r F + µỹ(tj , ỹj)
⊤∇ỹF (14)

+
1

2
tr
(
Σỹ(tj , ỹj)Σỹ(tj , ỹj)

⊤Hỹ(F )
)
.

We refer to eDj as the error on the inner domain since it measures the goodness of �t before

expiry. The average quadratic loss on S̃D is the �rst component of the total loss function used
to �t the neural network,

LD (Θ) =
1

nD

nD∑
j=1

eDj (Θ)2 . (15)

Since the error eDj (Θ) depends on �rst and second-order partial derivatives, special attention
must be given to the accuracy of their calculation. Computing these derivatives using a standard
�nite di�erence method may introduce numerical instabilities. Therefore, we opt for an alter-
native approach known as automatic or algorithmic di�erentiation. Automatic di�erentiation
leverages the fact that every computer calculation executes a sequence of elementary arithmetic
operations and elementary functions, allowing us to compute partial derivatives with accuracy
up to the working precision. Automatic di�erentiation is implemented in TensorFlow through
functions such as GradientTape(.) and tape.gradient(.). For a more in-depth introduction and
perspectives, we refer the reader to van Merriënboer et al. (2018).

On the terminal boundary sample set S̃T , we de�ne the error eTk (Θ) for k = 1, ..., nT , as the
di�erence between the output of the neural network and the payo� at expiry:

eTk (Θ) = F (T̃k, ỹk, rk, κk, γk, σk, ρk, T̃k)−H

(
S̃k − aS
bS

)
. (16)

The average quadratic loss at expiry is the second component of the total loss function.

LT (Θ) =
1

nT

nT∑
k=1

eTk (Θ)2 . (17)

On the lower boundary sample set S̃low, we de�ne the error e
low
l (Θ) for l = 1, ..., nlow, as the

di�erence between the output of the neural network and the discounted payo� at expiry when
the stock price reaches its minimum:

elowl (Θ) = F (t̃l,
(
aS , Ṽl

)⊤
, rl, κl, γl, σl, ρl, T̃l)− e

−r
(T̃l−t̃l)

bh H (0) .

The average quadratic loss on this lower boundary is the third component of the total loss
function.

Llow (Θ) =
1

nlow

nlow∑
l=1

eTl (Θ)2 . (18)

The optimal network weights are found by minimizing the losses in S̃D, S̃T and S̃low,

Θopt = argmin
Θ

[LD (Θ) + LT (Θ) + Llow (Θ)] . (19)

In practice, the minimization is performed with a gradient descent algorithm. For an introduc-
tion, we refer e.g. to Denuit et al. (2019), section 1.6.
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5 Calibration and validation procedures

In the numerical illustration, we will compare put option prices computed by PINN's and Fast
Fourier Transform (FFT). There are two alternatives for option pricing by FFT. The �rst one,
proposed by Carr and Madan (2001), inverts numerically the characteristic function of option
prices. A single run of this procedure returns option values for a wide range of strike prices.
The accuracy of this method nevertheless depends on a tuning weight (α in the original paper),
that ensures the existence of the Fourier transform. The optimal choice of this weight depends
on Heston parameters and an inappropriate value generates numerical unstabilities. As we need
prices for various and randomly generated Heston parameters, tuning the α is problematic. For
this reason, we opt for a more robust alternative that approximates the probability density
function (pdf) of the stock price by inverting its characteristic function. We brie�y recall this
method in the next subsection.

5.1 Option pricing by FFT

In the Heston model, the characteristic function of the log-return admits a closed-form expression
provided in the next Proposition.

Proposition 1. The characteristic function of ln (Ss/S0) |Ft under the risk neutral Q, for s ≥ t
with ω ∈ C, is given by the following expression

EQ
(
eω ln(Ss/S0) | Ft

)
=

(
St
S0

)ω

exp (A(ω, t, s) +B(ω, t, s)Vt) . (20)

Let us de�ne the following constants:d =
√
(ρσω − κ)2 + σ2 (ω − ω2) ,

g = κ−ρσω+d
κ−ρσω−d .

The functions A(ω, t, s) and B(ω, t, s) in Equation (20) are given by

A(ω, t, s) = r ω (s− t) +

κγ

σ2

(
(κ− ρσω + d) (s− t)− 2 ln

(
1− ged(s−t)

1− g

))
, (21)

and

B(ω, t, s) =
κ− ρσω + d

σ2
1− ed (s−t)

1− g ed (s−t)
. (22)

For a proof, the reader can refer for instance, to Hainaut (2022), chapter 3, p. 65. Eu-
ropean call or put options do not have analytical expressions. In order to evaluate these op-
tions, we calculate numerically the probability density function of the log-return, ln (ST /S0) |Ft,
by a discrete Fourier transform (DFT). The characteristic function of a random variable, here
Υt,T (iω) = EQ (ei ω ln(ST /S0) | Ft

)
, is also the inverse Fourier transform of its probability density

function (pdf):

ft,T (u) =
1

2π

∫ +∞

−∞
Υt,T (iω) e

−i u ωdω (23)

=
1

π
Re

(∫ +∞

0
Υt,T (iω)e

−i u ωdω

)
Therefore, we can retrieve the pdf by computing numerically its Fourier transform as stated in
the next proposition.
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Proposition 2. Let M be the number of steps used in the Discrete Fourier Transform (DFT)

and ∆u = 2umax
M−1 be this step of discretization. Let us denote ∆ω = 2π

M ∆u
and

ωm = (m− 1)∆ω,

for m = 1...M . Let Υt,T (ω) = EQ (eω ln(ST /S0) | Ft

)
be mgf of ln (ST /S0). The values of ft,T (·)

the pdf of ln (ST /S0) |Ft at points uk = −M
2 ∆u + (k − 1)∆u are approached by the sum:

f (uk) ≈ 2

M ∆u
Re

(
M∑

m=1

ϱmΥt,T (i ωm) (−1)m−1e−i 2π
M

(m−1)(k−1)

)
. (24)

where ϱm = 1
21{m=1} + 1{m ̸=1} +

1
21{m=M}.

This result is proven by discretizing the integral (23). The value of a European option of
maturity T and payo� H(ST ) is then approached by the following sum

EQ
(
e−r(T−t)H(ST )|Ft

)
≈

M∑
k=1

f (uk)H(S0e
uk) . (25)

Prices obtained by this method are compared to PINN prices. This method is sensitive to the
choice of umax andM . By construction, we have the constraint that ∆ω∆u = 2π

M . For a givenM,
a small discretization step ∆u for log-returns implies a large discretization step ∆ω of frequencies
and vice-versa. A reasonable accuracy can only be achieved if ∆ω and ∆u are small enough. In
the numerical illustration, we set M = 28 and umax = 2.2.

5.2 Learning dataset, calibration procedure and metrics

We estimate several PINN's for pricing European put options of maturities up to 5 years in
various market conditions. During the training, the inner error is computed with nD =20,000
combinations of parameters and state variables. These are randomly drawn from intervals re-
ported in Table 1. The errors on the terminal and lower boundaries are both assessed with
sample sets of sizes nT = 5, 000 and nlow = 5, 000. The learning space, Sd, is relatively large
and cover various market conditions. Note that we have used the same data sets for all proposed
neural architectures for an easy comparison of results.

Range of parameters and state variables

St ∈ [20, 180] Vt ∈ [0.032, 0.52]

rj ∈ [0.01, 0.07] κj ∈ [0.5, 2]

γj ∈ [0.062, 0.42] σj ∈ [0.1, 0.9]

ρj ∈ [−0.8, 0.8] Tj ∈ [0, 5]

tj ≤ Tj

Table 1: Intervals from which parameters and state variables are generated.

The option strike is set to K= 100 but this is not a limitation. As the payo� is piecewise
linear, we use the rule of thumb for valuing options with other strikes. Let us momentaneously
denote the option price at time t by V (St,K) , for an asset value St and a strike K. The value
of an option of strike K

′ ̸= K is then equal to:

V (St,K
′
) =

K
′

K
V

(
K

K ′ St,K

)
,

and can therefore be assessed with the network, without retraining. To compare the di�erent
neural architectures, we take care to apply a calibration protocol that is consistent across all
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tested con�gurations. It comprises four phases, with a decreasing learning rate and a variable
number of iterations for each phase. The learning rates and the number of iterations per phase
are detailed in Table 2. Network weights are optimized with the Adam algorithm which is a
variant of the stochastic gradient descent.

Phase Learning rate Epochs

1 0.005 500

2 0.002 1,000

3 0.001 1,000

4 0.0001 ,1000

Table 2: Learning rates and number of epochs used in the four training phases.

Decreasing the learning rate per phase reduces the number of iterations compared to a constant
low learning rate. This reduction in the number of iterations shortens the model execution time,
enabling relatively rapid calibration. Standardization of the calibration process allows for the
comparison of errors at the end of 3,500 iterations. It is noteworthy that for some architectures, a
larger number of iterations could potentially result in lower errors but we decided to use the same
number of epochs for all networks. The comparison of networks is based on several performance
metrics. The �rst ones are the total loss function and its components LD, LT , Llow after training.
We also calculate the mean square error, denoted by MSEalea, between PINN and FFT prices.
This MSE is computed with a sample set of 5000 combinations of parameters and state variables.
A third metric is the mean square error computed for a �xed set of Heston parameters, reported
in Table 3, and random values S0 ∈ [20, 180], T ∈ [0, 5]. This error, denoted by MSEconfig,
is valued on a sample set of 5000 pairs (T, S0). The last measure is the relative error for for
in-the-money options (i.e. St < K). This error is denoted by Errrelative and computed on a
random set of 5000 combinations of Heston parameters and state variables.

MSEconfig

γ 0.152 r 0.03

κ 0.80 V0 1.20 γ

σ 0.10 ρ -0.40

Table 3: Market parameters for the calculation of the MSE with a single Heston con�guration.

6 Numerical analysis

Tables 4 and 5 respectively report the values of losses and the performance metrics of tested
network architectures. We observe that lower losses after 3500 training iterations are obtained
with networks having a higher number of layers and neurons. This is consistent with the idea
that increasing the number of neural weights allows greater freedom in optimizing the network.
For a given number of epochs, the reduction in loss components is therefore greater for complex
architectures. Based on the analysis of losses, we would prefer the network with 4 layers and
256 neurons. We also see that losses on the lower boundary are nearly null for all networks. The
total loss is mainly due to errors on the inner domain and on the terminal boundary.
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# of layers # of neurons Total loss Inner loss Lower loss T loss
per layer LD Llow LT

2 32 0.411 0.234 0.013 0.164

3 32 0.364 0.210 0.011 0.143

4 32 0.289 0.163 0.009 0.117

2 64 0.307 0.183 0.008 0.116

3 64 0.191 0.122 0.004 0.065

4 64 0.139 0.085 0.004 0.051

2 128 0.175 0.103 0.004 0.068

3 128 0.104 0.064 0.002 0.038

4 128 0.066 0.044 0.001 0.021

2 256 0.119 0.067 0.003 0.049

3 256 0.050 0.030 0.001 0.018

4 256 0.049 0.030 0.001 0.017

Table 4: Total loss and its components

# of layers # of neurons
per layer MSEalea MSEconfig Errrelative

2 32 2.611 2.477 0.046

3 32 2.892 2.505 0.043

4 32 2.195 0.924 0.040

2 64 2.877 2.977 0.045

3 64 2.583 1.274 0.045

4 64 2.622 0.907 0.043

2 128 2.583 1.199 0.043

3 128 2.509 1.031 0.044

4 128 2.462 0.700 0.044

2 256 2.206 0.394 0.042

3 256 2.373 0.651 0.044

4 256 2.346 0.689 0.044

Table 5: Mean squared errors and relative errors for the tested con�gurations

Table 5 reveals that the MSEalea's on a random set, range between 2.195 and 2.892. It seems
that complex architectures with a low training loss do not necessary minimizes the MSE on a
random sample. For instance, the network with 4 layers and 32 neurons achieves the lowest
MSEalea whereas its total calibration error reaches 0.289. We can partly explain this by the
tendency of complex networks to over�t data. Ideally, we should increase the size of training sets
proportionally to model complexity in order to limit over�tting. However, we haven't adapted the
size of the training set to allow for a meaningful comparison. On the other hand, we should not
forget that FFT prices are themselves numerical approximations of exact ones. This introduces
a non-negligible bias in the calculation of MSE's. Furthermore for some Heston parameters, the
FFT method fails to compute a price (due to an over�ow encountered in the calculation of the
characteristic function). The calculation of prices for these con�gurations requires a �ne tuning
of FFT parameters, case by case, which is not possible givent the size of the training set. The
MSE are computed only with Heston parameters for which the FFT yields a price (i.e. for more
than 90% of training data). For the Heston con�guration of Table 3, we observe signi�cation
variation ofMSEconfig depending on the model complexity. According to this criterion, the best
network has 2 layers of 256 neurons. the relative errors for in the money options are comparable
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and close to 4%. To understand from where come errors, we focus on a network with 4 layers of
256 neurons (4-256 network) and study its performance in greater depth.

6.1 Analysis of the 4-256 network, �xed market parameters

In this subsection, we consider a unique set of Heston parameters, presented in Table 6.

γ 0.202 r 0.04

κ 1.15 ρ -0.40

σ 0.20

Table 6: Market parameters for the analysis of the 4-256 network.

The left plot of Figure 2 compares FFT and PINN prices of 5 years European put when
V0 = 0.252. We observe that FFT and PINN prices are close whatever the stock value, S0. For
high value of S0, PINN prices converges to zero at a faster pace than those computed by FFT.
This is partly due to the numerical errors of the FFT algorithm.

Figure 2: 5 years European put priced with PINN and FFT.

Figure 3: Heatmaps of absolute di�erences between PINN and FFT prices.

The right plot of Figure 2 presents option prices at expiry and reveals the terminal boundary
condition is well ful�lled. The left plot of Figure 3 shows a heatmap of absolute gaps between
PINN and FFT option prices for maturities between 0 and 5 years and S0 ∈ [20, 180]. It con�rms

13



that spreads between FFT and PINN prices remain relatively small whatever the maturity and
S0. For a given maturity, the largest pricing errors are observed in areas where the convexity of
the price curve is the highest. The right plot of of Figure 3 presents the heatmap of price spreads
for maturities T ∈ [0, 5] and V0 ∈ [0.001, 0.24]. The stock value is set to S0 = 90. Spreads are
smalls and nearly constant. We observe a small increase at short term and for higher initial
variances.

6.2 Analysis of the 4-256 network, random market parameters

In this subsection, we analyze the spreads between FFT and PINN prices for various Heston
parameters. The right plot of Figure 4 shows the heatmap of absolute di�erences between FFT
and PINN prices by maturities and stock values. To limit computational time, we consider 2500
combinations of Heston parameters and state variables simulated as follows. For each value of
St ranging from 20 to 180 in steps of 3.2 (50 values), we randomly draw 50 Heston parameters,
maturities, and variances. For each combination, we then compute the put price using both FFT
and PINN methods. Some of cells of the heatmap are uncolored because the FFT algorithm fails
to compute a price for the given set of Heston parameters. As mentioned, the FFT algorithm is
sensitive to the number of discretization steps M and to the domain of the pdf, [−umax ; umax],
here set to M = 28 and umax = 2.2. When the volatility is high, the FFT algorithm fails to
compute a price due to an over�ow encountered in the calculation of the characteristic function.
Obtaining a value requires tuning M and umax on a case-by-case basis without guarantee of
accuracy. In comparison the PINN always yields a price regardless of the market parameters and
is, from this viewpoint, much more robust than the FFT. On the other hand, we observe that for
most standard market con�gurations, the pricing error is under control. The gap between FFT
and PINN price increases with maturity but this is partly due to the numerical instability of
the FFT method. The left plot of Figure 4 shows the same heatmap with respect to maturities
and variances (2500 points). This con�rms that the PINN pricing error is reasonable in most of
con�guration.

Figure 4: Heatmap of spreads between PINN and FFT prices on a random sample of parameters.
Left plot : T vs S0. Right plot: T vs V0.

6.3 Sensitivity of the 4-256 network to training parameters

In this section, we analyze the sensitivity of performance metrics with repect to parameters of
the training procedure. We focus on the network with 4 layers and 256 neurons. We perform
three tests:

� Test A : Increase of the sample size nD from 20,000 to 100,000 items and nT , nlow from
5,000 to 25,000.
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� Test B : Increase of the number of epochs from 3,500 to 6,500 and a smaller learning rate
of 1/10,000 during the last 3,000 iterations.

� Test C : Both increases of the sample size and number of epochs (combination of tests A
and B).

Total loss Inner loss Lower loss T loss MSEalea MSEconfig Errrelative
LD Llow LT

Initial 0.049 0.030 0.001 0.017 2.346 0.696 0.044

Test A 0.058 0.034 0.001 0.023 2.418 0.667 0.042

Test B 0.037 0.023 0.001 0.014 2.381 0.702 0.043

Test C 0.040 0.024 0.0004 0.016 2.460 0.697 0.044

Table 7: Performance metrics for various training parameters

The performance metrics after training are reported in Table 7. Several conclusions can be
drawn from these tests. Firstly, increasing the size of the training sample (test A: 150,000
in total vs. 30,000 considering inner and boundary data sets) does not lead to a signi�cant
reduction in the loss function. Nevertheless, a signi�cant improvement in MSE is not observed.
Secondly, increasing the number of epochs and reducing the learning rate (test B) allows for a
slight reduction in the loss function, but the reductions in MSE are not truly signi�cant. Thirdly,
increasing both the sample size and the number of epochs slightly reduces the total loss, but
MSE does not show improvement. Finally, we conclude that for the 4-256 network, there is no
need to increase the size of the data sample or the number of epochs. With 3,500 iterations and
30,000 data items, we achieve optimal accuracy for this network.

6.4 Release of the lower boundary condition

The analysis of inner losses in Table 4 reveals that errors on the lower boundary (when St = 0) are
nearly null (< 0.001). On this boundary, put option prices are set to discounted strike prices, and
this constraint is well integrated by nearly all models. It raises the question of whether we can
release this boundary condition. Our goal is to test if we could improve the inner and T losses by
ignoring this condition and indirectly giving them more importance during training. We test this
for the network with 4 layers and 256 neurons. The performance metrics are reported in Table
8 , which con�rms our intuition. Releasing the lower boundary condition allows a signi�cant
reduction in the inner and T losses (-62%). Surprisingly, we do not observe a major change in
MSEs, but as already mentioned, this may also be caused by the numerical inaccuracies of the
FFT.

Lower Total loss Inner loss Lower loss T loss MSEalea MSEconfig Errrelative
boundary LD Llow LT

with 0.049 0.030 0.001 0.017 2.346 0.696 0.044

without 0.019 0.011 n.a. 0.008 2.481 0.699 0.045

Table 8: Performance metrics for various training parameters

7 Conclusions

This article demonstrates that a Physics-Inspired Neural Network (PINN) is an e�cient alter-
native to standard methods for pricing options. In the �nancial industry, rapid pricing is of
paramount importance for the continuous recalibration of models to market quotes. Further-
more, the constant �uctuations in market parameters call for a robust tool. PINNs provide a
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solution to these challenges. After training, valuing an option with a PINN is indeed quasi-
instantaneous and by construction, the PINN is not subject to numerical instabilities.

We focus in this work on the Heston model, a standard framework for option pricing. Uti-
lizing Itô calculus and non-arbitrage arguments, we derive the Feynman-Kac equation governing
the prices of �nancial contingent claims. We propose a scaled and centered version of this partial
di�erential equation (PDE), whose solution is approximated by a neural network. We consider
a speci�c type of feedforward neural network with skip connections to intermediate layers to
capture the non-linearity of prices.

The calibration of this network does not require exact option values; instead, we minimize, via
stochastic gradient descent, the errors when replacing the option value with the Physics-Inspired
Neural Network (PINN) in the Feynman-Kac PDE. In comparison to existing literature, the
novelty of our approach lies in the network's ability to evaluate options for a wide range of Hes-
ton parameters and maturities. Contrastingly, the Fast Fourier Transform (FFT) method needs
to be rerun after every modi�cation of model parameters or option maturity, making PINN a
signi�cantly faster pricing process.

Additionally, as seen in the numerical illustrations, the FFT method is not always numeri-
cally stable and requires �ne-tuning. The PINN does not su�er from this drawback. However,
our approach has practical limitations, especially regarding the structure of the neural network
architecture. To the best of our knowledge, no theory on the architecture of the network has
yet been formulated for solving stochastic di�erential equations. We have thus opted for a
layer-constant network structure, although other architectural methods (top-down, bottom-up
architecture, etc.) could be considered.

On the other hand, the calibration procedure (number of iterations, learning rate, choice of
optimizer) relies more on empirical practices than on theoretical results. Empirical use is crucial
for choosing the right calibration, and a trial-and-error phase is necessary in practice. While
the performance of neural networks is usually signi�cant, the explicability of models is low. The
black-box aspect of this approach limits model comprehension and explicability. A market pa-
rameter sensitivity approach can be used to understand the main principles of the market.

The consistency and accuracy demonstrated by Physics-Inspired Neural Networks (PINNs) in
valuing European options within the Heston model suggest their potential relevance for pricing
more complex exotic derivatives. An extension of the proposed framework to value Bermudian
options, for instance, could be explored. Handling multiple exercise dates in this context would
require incorporating into the loss function intermediate errors related to early exercises. Fur-
ther enhancements to the accuracy of PINNs could be achieved through various avenues, such
as incorporating long-short term memory cells or employing boosting techniques.
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