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Abstract

Generalized additive models (GAMs) are a leading model class for interpretable machine
learning. GAMs were originally trained using smoothing splines. Recently, tree-based GAMs
where shape functions are gradient-boosted ensembles of bagged trees were proposed (e.g.
Explainable Boosting Machine). In this paper, we introduce a competing three-step GAM
learning approach where we combine i) the knowledge of the way to split the covariates space
brought by an Additive tree model (ATM), ii) an ensemble of predictive linear scores derived
from Generalized linear models (GLMs) using a binning strategy based on the ATM, iii) a
final GLM to have a prediction model that ensures auto-calibration. Numerical experiments
illustrate the very good performances of our approach on several datasets compared to GAM
with splines, EBM or GLM with binarsity penalization. A case-study in trade credit insur-
ance is also provided.

Keywords: Additive tree ensembles, Auto-calibration, Generalized additive models, Gen-
eralized linear models, Partitioning methods, XAI.
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1 Introduction
Insurance companies need explainable pricing and reserving models because the decisions
they make based on these models can have significant financial and legal implications, but
also because they are crucial for building trust with all stakeholders and regulators. General-
ized additive models (GAMs), originally developed by Trevor Hastie and Robert Tibshirani
(Hastie and Tibshirani [1986]), have emerged as a spearhead of the actuaries’ toolbox (see
e.g. Wood [2017] for an introduction with R). The combination of additive nature, smooth
functions, interpretability, and transparent variable selection in GAMs makes them highly
explainable models that are suitable for a wide range of applications where model inter-
pretability is important:

- GAMs are an extension of Generalized linear models (GLMs) that allow for non-
linear relationships between predictors and the response variable. But they retain their
additive structure, meaning that they model the relationship between the predictors and
the response variable as a sum of individual functions of the predictors. This additive
nature allows for clear separation of the effects of each predictor, making it easy to explain
the contribution of each predictor to the overall model prediction. Each function can be
visualized and interpreted separately, providing insights into how each predictor affects the
response variable.

- GAMs use smooth functions, such as spline functions or other smooth basis func-
tions, to model the relationship between the predictors and the response variable. These
smooth functions are typically visually interpretable and can be plotted to understand the
shape of the relationship. This makes it easier to explain the model to non-technical stake-
holders by visualizing and describing the smooth functions in simple terms.

- GAMs typically use techniques such as cross-validation or information criteria to
automatically select the most important predictors to include in the model. This makes the
variable selection process transparent and allows for easy explanation of which predictors
are included and why, adding to the model’s interpretability.

Although GAMs are flexible and powerful statistical modeling technique, there are some
well-known limits to their use that should be considered when applying this modeling ap-
proach. The quality and quantity of data used to build GAMs can affect the accuracy and
generalizability of the model. GAMs require a sufficient amount of data to accurately capture
the underlying patterns and relationships, and missing or erroneous data can lead to biased
or inaccurate models. GAMs can also be computationally expensive to fit, particularly when
a large number of predictors are included in the model. This can make the model difficult
to use in practice or in real-time applications.

In the meantime, bagging and boosting techniques as well as neural networks have ap-
peared as effective machine learning methods and have given actuaries great hope for im-
proving their models. But their opacity and the difficulties in understanding and interpreting
their results have not led them to replace GAMs or GLMs. An alternative path was there-
fore to use these modern machine learning methods to improve the estimation of non-linear
relationships between predictors and the response variable.

Explainable Boosting Machine (EBM), developed by Nori et al. [2019], is the prominent
example of GAMs that uses a boosting algorithm to make the model’s accuracy comparable
to state-of-the-art machine learning methods like random forest and boosted trees. An EBM
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is a tree-based GAM where shape functions are gradient-boosted ensembles of bagged trees.
Each tree operates on a single variable and is grown by repeatedly cycling through features
forcing the model to sequentially consider each feature as an explanation of the current
residual. The EBM-BF (EBM-BestFirst) is a sparse version of EBM that put most weight
on a few very important features, and little or no weight on features whose signal could be
learned by other stronger, correlated features.

GAMboostLSS, developed by Hofner et al. [2014], is an R package for fitting GAMs for
location, shape, and scale (GAMLSS) to potentially high-dimensional data using boosting
techniques. GAMLSS extends traditional linear regression models for the mean by allowing
to model different parameters (e.g., variance, skewness, kurtosis). This makes it versatile for
handling data with various distributional shapes and complexities.

EBM or GAMboostLSS have quickly gained popularity. But they may have some limi-
tations that should be taken into account when considering their use in a particular machine
learning task. E.g. they can be less robust to missing data than other machine learning
models as they require imputation or removal of missing data before they can be trained.
But this limitation is also shared by many other algorithms.

An alternative approach to GAMs using boosting algorithms is to consider GLMs with
innovative regularisation technique. Binarsity (Alaya et al. [2019]) is a new type of regular-
ization or penalization technique specifically designed to handle high-dimensional and sparse
one-hot encoded features in linear supervised learning. One-hot encoding can lead to high-
dimensional binary feature vectors, especially when dealing with categorical variables with
many categories. These high-dimensional feature vectors can pose challenges in linear mod-
els. Binarsity encourages group sparsity among the binary features, making the model more
interpretable and reducing the risk of overfitting. The strength of the binarsity penalty is
controlled by a hyperparameter that needs however to be tuned with care for optimal model
performance.

In this paper, we propose a competing three-step GAM learning approach. In a first
step, we fit an additive tree model. ATMs are a type of machine learning model that uses
an ensemble of decision trees to make predictions. It is also known as a gradient boosting
machine with trees as base learners, or simply a gradient tree boosting model. Our aim is to
use the knowledge of the way to split the covariates space brought by the ATM for binning
the covariates. In a second step, for each decision tree of the ensemble, we fit a GLM with
the binned covariates, collect the underlying stepwise functions of the GLM predictive scores
and then aggregate them. In a third step, we fit a final GLM to have an auto-calibrated
prediction model that corrects for possible systematic cross-financing between different price
cohorts within the insurance portfolio. The results we obtain on synthetic data show the
very high performance of our approach compared to other methods for estimating GAMs.

The rest of this paper is structured as follows. Section 2 introduces the additive structure
of the GAM and describes precisely the different steps of our algorithm. Section 3 validates
our approach on synthetic data with known ground-truth feature shapes and compares it
with the historical GAM with splines, EBM and GLM with binarsity penalization. A case-
study in trade credit insurance is provided in Section 4.
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2 Methodology
Given a vector of covariates X = (X1, . . . , Xp), a univariate response variable Y , a link
function g and shape smooth functions fj, j = 1, . . . , p, a GAM can be written as:

g (E[Y |X = x]) = β0 +
p∑

j=1
fj (xj) , x = (x1, . . . , xp).

An exponential family distribution is specified for Y (for example Gaussian, Binomial or
Poisson distributions). The additive structure allows for clear separation of the effects of
each covariate, making it easier to draw insights of the contribution of each covariate to the
overall model prediction, while using the functions fj (usually splines or other basis functions)
leads to capture the underlying nonlinearities in the data. Identifiability constraints are in
general applied, e.g. E[fj (Xj)] = 0 for j = 1, . . . , p, to make the model identifiable. The
GAM with pairwise interactions (GA2M) includes pairwise shape functions:

g (E[Y |X = x]) = β0 +
p∑

j=1
fj (xj) +

∑
(i,j)∈S2

fi,j (xi, xj) , x = (x1, . . . , xp),

where S2 is a set of non-empty subsets of {1, . . . , p} with cardinality 2, and fi,j are shape
smooth bivariate functions. GAMs with or without pairwise interactions are highly inter-
pretable because the impact of each shape functions fj or fi,j on the prediction can be
visualized as a graph, and it is easily understood how a GAM works by reading the different
features from the graphs and adding them together.

In GAM with splines approach, basis functions for the splines are first chosen (e.g.
the family of cubic splines are piecewise-defined cubic polynomials), then splines require
the specification of knot locations (knots are points along the predictor variable where the
smoothness of the curve may change), and finally the GAM model is fitted to the data using
techniques like least squares estimation or maximum likelihood estimation. It is possible
to select smoothing parameters to control the degree of smoothness of each shape functions
and to determine how much the smooth functions can deviate from linearity. Techniques
like cross-validation are often used to choose these smoothing parameters.

In EBM, the shape functions are fitted through a process that involves creating a set of
additive functions while boosting them to improve predictive accuracy. The process starts
by initializing the EBM model and setting the number of boosting iterations (the number
of weak models to combine). In each boosting iteration and for each covariate, the weak
model (a simple decision tree) is trained to approximate the negative gradient of the loss
function with respect to the current model’s predictions. This weak model aims to correct the
errors made by the previous ensemble of additive functions. The additive functions are then
modified to incorporate the predictions from the new weak model. To prevent overfitting, a
shrinkage or learning rate parameter is applied to the predictions of the weak model before
adding them to the additive functions.

For the GLM with binarsity penalization, the idea is to one-hot encode continuous fea-
tures and to encourage block-sparsity in the GLM’s coefficients with an appropriate penal-
ization. The model defines one group of binary features for each raw continuous feature
(these groups are naturally ordered). The binarsity penalization then combines a group
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total-variation penalization, with an extra linear constraint in each group to avoid collinear-
ity. This penalization forces the weights of the model to be as constant as possible within a
group by selecting a minimal number of relevant cut-points.

We propose a new methodology for estimating the shape functions fj of a GAM by
approximating them as averages of piecewise functions. Let us assume for a moment that
the shape functions fj of the GAM may be written as follows

fj (xj) =
nj∑

k=1
βk,jI{xj∈(sk,j ,sk+1,j ]}

where nj ∈ N∗, βk,j ∈ R and the support of Xj is included in ⋃nj

k=1(sk,j, sk+1,j]. The pairwise
interactions fi,j of GA2M may also be written as stepwise functions on R2 based on Cartesian
products of intervals. Then the GAM could be estimated as a GLM (assuming that the
number of intervals nj is not too large). However there are two issues in using such an
approximation. First, the splitting in intervals is not given a priori and should be made
according to the shape of the shape functions fj which are unknown. Second, these functions
are assumed to be smooth and their estimates should also be smooth. Our methodology
consists in distilling knowledge of an ATM for binning the covariates and in estimating an
ensemble of stepwise functions whose aggregation will provide a smoother estimate.

2.1 Step 1: knowledge distillation
Knowledge distillation is a technique used to transfer the knowledge learned by a complex,
high-performing machine learning model, known as the teacher model, to one or several
simpler, smaller models, known as the student models.

In our fitting procedure, an Additive tree models (ATM) plays the role of the teacher.
An ATM is an ensemble model of decision trees such as random forests (Breiman [2001])
and boosted trees (Friedman [2001]). Because of their high prediction performance, ATMs
are one of the must-try methods when dealing with real problems. By combining decision
trees, ATMs can then capture non-linear relationships between the input features and the
target variable.

Let D = {(xi, yi), i = 1, . . . , n} be an observed i.i.d sample. The first step of our
approach consists in fitting an ATM on D using the log likelihood loss function associated
with Y and the link function g of the GAM. The output space of the ATM is a collection of
predictions from individual trees, combined according to a chosen ensemble method (random
forests or boosted trees). For classification tasks, the output space consists of class prob-
abilities or class labels, while for regression tasks, it contains continuous prediction values.
In a random forest, predictions from individual trees are combined by taking a majority
vote for classification or an average for regression. In boosting, the predictions of each tree
are weighted based on their accuracy and used to update the model in the next iteration.
The final prediction is the sum of the predictions from all trees in the ensemble. The input
covariate space is therefore splitted by the ATM into regions (rectangles) with an assigned
prediction value to each region. We denote by s

(l)
k,j the ordered k-th split for the j-th variable

and the l-th tree (derived from the leaf nodes of the tree). We denote by n
(l)
j the number of

splits for the j-th variable and the l-th tree.
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2.2 Step 2: building ensemble of GLMs
For each tree l, we fit the following GLM

g (E[Y |X = x]) = β
(l)
0 +

p∑
j=1

n
(l)
j −1∑
k=1

β
(l)
k,jI{xj∈(s(l)

k,j
,s

(l)
k+1,j

]}

and consider it as a student model for the knowledge distillation. Pairwise interactions may
be added. Let us denote by β̂

(l)
k,j the estimates of the coefficients β

(l)
k,j. Each GLM is only

a rough approximation of the GAM. By combining the GLM linear scores, we get a more
accurate estimate of fj given by

f̂
(0)
j (xj) = 1

L

L∑
l=1

n
(l)
j∑

k=1
β̂

(l)
k,jI{xj∈(s(l)

k,j
,s

(l)
k+1,j

]}

where L is the number of tree partitions in the ensemble of the ATM. This ensemble approach
improves model generalization and helps reduce overfitting of the final GLM.

The link function g is not in general a linear function and the proposed linear aggrega-
tion method may induce biased predictions for the target Y (after taking into account the
transformation of the average score by g−1). The third step of our methodology aims at
debiasing these predictions.

2.3 Step 3: auto-calibration
Auto-calibration refers to the process of calibrating the outputs of a machine learning model
to better match the true probabilities of the output classes in case of classifications or
to have a better balance between sums of prediction and sums of observations in case of
regressions. Many machine learning models, such as random forests, gradient boosting and
neural networks output scores or probabilities that are not calibrated. Auto-calibration is
important in insurance pricing where candidate premiums have to reveal the risk at individual
policy level but also enable the global price level to reproduce the experience within the
portfolio. In Denuit et al. [2021], the authors propose to correct for bias by adding an extra
local GLM step to the analysis with the output of the first step estimate. In Wüthrich
and Ziegel [2023], an isotonic recalibration is applied to a given regression model to ensure
auto-calibration. In Lindholm et al. [2023], the covariate space is first partitionned using
two different approaches: (i) duration-weighted equal-probability binning, (ii) binning by
duration-weighted regression trees, and then a local bias adjustment is implemented.

However, the previous procedures would lead to the destruction of the additive structure
of the model derived from step 2. We therefore favour a global auto-calibration by adding
an extra global GLM step with the following model

g (E[Y |X = x]) = β0 +
p∑

j=1
αj f̂

(0)
j (xj) .

Our final estimates of the shape functions fj are then given by

f̂j (xj) = α̂j f̂
(0)
j (xj) , j = 1, . . . , p.

Figure 1 schematizes the several steps of our competing GAM approach.
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Figure 1: Schematic overview of the estimation procedure

3 Validation using synthetic data with known ground truth
We simulate data from both regression and classification models with known ground-truth
feature shapes to see if our new methodology can recover these feature shapes. The func-
tions fj considered are given in Table 1 and are represented graphically in Figure 2. These
linear and highly nonlinear functions have been proposed in Hooker (2004), and also used in
Friedman and Popescu [2008], Tsang et al. [2017] and Tan et al. [2018].

f1 (x1) = 3x1 f2 (x2) = x3
2 f3 (x3) = πx3

f4 (x4) = exp (−2x2
4) f5 (x5) = (1 + |x5|)−1 f6 (x6) = x6 log (|x6|)

f7 (x7) =
√

2|x7| + max (0, x7) f8 (x8) = x4
8 + 2 cos (πx8)

Table 1: Shape functions fj

We now compare our approach with the GAM with splines, EBM and GLM with bina-
rsity penalization, for two types of prediction tasks: regression and classification.

3.1 Regression task
We first consider the regression task for which g (y) = y, y ∈ R, and Y (given X = x) has a
Gaussian distribution with mean equal to ∑8

j=1 fj (xj) and standard deviation equal to 0.5.
As in Friedman and Popescu [2008], we assume that X is a random vector whose components
are independent and distributed according to the uniform distribution on (−1, 1). As in
Tsang et al. [2017], we add to the list of covariates two noise covariates that have no effect
on E[Y |X = x], X9 and X10, which have been assumed to be independent on X and to have
uniform distribution on (−1, 1). We simulate samples of size 50,000.

For the ATM, we used GBM of the H2O R package. For the GAM, we used gam of
the mgcv R package. For the EBM, we use ebm from the python package InterpretML. For

6



Figure 2: Plots of the shape functions fj

the GLM with binarsity penalization, we used the github repository /SimonBussy/binarsity.
For each model, the choice of the hyper-parameters are given in Table 2.

Model Package Model parameters not set to their default values
GBM H2O R ntrees = 200, max_depth = 9, learning_rate = 0.1,

sample_rate = 1, col_sample_rate = 1, crossval = 5
GAM mgcv R basis function = cubic regression splines
EBM InterpretML learning_rate = 0.01, interactions = 0,

validation_size = 0.15
Binarsity github binarsity ncuts = 30, crossval = 5, C = 1e4

Table 2: Choice of the hyper-parameters for the regression task

The performances of the various models measured by the R2 metric are shown in Table
3. They are very close to each other. It is not surprising that GAM performs as well as the
other competitors, because it was used to generate the data.

The estimated feature shapes are plotted in Figure 3. The fourth learning approaches
provide estimated functions that are very close to each other. The functions given by EBM,
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Train R2 Test R2

GAM 95.60% 95.65%
EBM 95.68% 95.62%
Binarsity 95.45% 95.46%
Distilltrees 95.19% 95.23%

Table 3: Comparison results based on R2

however, tend to be less smooth than the others. For f3, f4, f5 and f7, there are level
discrepancies between the true functions and the estimated functions. This is a consequence
of the identifiability constraints. The free-signal covariates X9 and X10 are each estimated
close to 0 for the fourth learning approaches.

All fourth learning approaches provide auto-calibrated predictions, see Figure 4. To
obtain this figure, the data set is sorted based on the values of the predictions of E[Y |X = x].
The data are then bucketed into 50 equally populated classes based on quantiles. Within each
bucket, the average of the predictions is calculated as well as the average of the observations
Y . Both averages are then graphed for each class.

3.2 Classification task
We now consider the classification task where g−1 (p) = log(p/(1 − p)), p ∈ (0, 1), and
Y (given X = x) has a Binomial distribution with parameter g(∑8

j=1 fj (xj)). As for the
regression task, we assume that X is a random vector whose components are independent
and distributed according to the uniform distribution on (−1, 1). We also add to the list
of covariates two noise covariates that have no effect on E[Y |X = x], X9 and X10, which
have been assumed to be independent of X and to have uniform distribution on (−1, 1). We
simulate samples of size 50,000.

For the ATM, we used GBM of the H2O R package. For the GAM, we used gam of
the mgcv R package. For the EBM, we use ebm from the python package InterpretML. For
the GLM with binarsity penalization, we used the github repository /SimonBussy/binarsity.
For each model, the choice of the hyper-parameters are given in Table 4.

Model Package Model parameters not set to their default value
GBM H2O R ntrees = 200, max_depth = 9, learning_rate = 0.1,

sample_rate = 1, col_sample_rate = 1, crossval = 5 folds
GAM mgcv R basis function = cubic regression splines
EBM InterpretML learning_rate = 0.01, interactions = 0,

validation_size = 0.15
Binarsity github binarsity ncuts = 30, crossval = 5, C = 1e4

Table 4: Choice of the hyper-parameters for the classification task

The performances of the various models measured by the AUC metric are shown in
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Figure 3: Feature shapes learned using GAM with splines, EBM, Distill tree and GLM with
binarsity penalization

Table 5. They are still very close to each other as for the regression task.
The estimated feature shapes are plotted in Figure 5. Compared with the regression

task, the functions are a little bit less well estimated. GAM fares best, while providing in-
herently smooth estimates. Distilltrees tends to provide smoother estimates than these two
other competitors. As for the regression task, for f3, f4, f5 and f7, there are level discrep-
ancies between the true functions and the estimated functions beacause of the identifiability
constraints.

All fourth learning approaches provide auto-calibrated predictions (see Figure 6).
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Figure 4: Predicted probabilities vs observed probabilities for the different learning models

Train AUC Test AUC

GAM 89.31% 89.41%
EBM 89.56% 89.29%
Binarsity 89.38% 89.25%
Distilltrees 89.37% 89.27%

Table 5: Comparison results based on AUC

4 A case-study
In this section we provide a case-study in trade credit insurance where we compare our new
learning approach with GAM with splines, EBM and GLM with binarsity penalization.

Allianz Trade is an international insurance company specialised in trade credit insurance.
Credit insurers provide a range of financial services to businesses to help protect them against
the risk of non-payment by their customers. They have to assess the creditworthiness of
businesses’ customers or clients. Based on their own risk assessment, credit insurers provide
businesses with recommendations regarding the credit limits they should extend to their
customers.

Allianz Trade provided us with a database of businesses’ customers default events. This
database also contains information on the financial stability, payment history, and credit
ratings of its customers to determine the level of risk associated with each businesses’ cus-
tomer. For confidentiality reasons, we cannot give the exact definition of each variable. But
we explain the meaning of the most important variables for the models.

For the ATM, we used XGB of the H2O R package. For the GAM, we used gam of
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Figure 5: Feature shapes learned using GAM with splines, EBM, Distill tree and GLM with
binarsity penalization

the mgcv R package. For the EBM, we use ebm from the python package InterpretML. For
the GLM with binarsity penalization, we used the github repository /SimonBussy/binarsity.
For each model, the choice of the hyper-parameters are given in Table 6.

The five most important variables based on the feature importance of the XGB are given
in Table 7.

The performances of the various models measured by the AUC metric are shown in
Table 8. XGB naturally performs best, since it takes into account interactions between
covariates and is not constrained by the linear structure of the additive model. However, the
performances of EBM, Binarsity and GLM with binarsity are not far apart. GAM model’s
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Figure 6: Predicted probabilities vs observed probabilities for the different learning models

Model Package Model parameters not set to their default value
XGB H2O R ntrees = 4000, max_depth = 5, learning_rate = 0.05,

min_rows = 10, crossval = 5 folds
GAM mgcv R basis function = cubic regression splines
EBM InterpretML learning_rate = 0.01, interactions = 0,

validation_size = 0.15
Binarsity github binarsity ncuts = 30, crossval = 5, C = 1e5).

Table 6: Choice of the hyper-parameters for the credit insurance case study

Name of the % of scaled Meaning of the covariate
covariate importance of the XGB

V2 23.29 Automatic acceptance processing system variable
V12 20.08 Risk exposure variable
V17 13.90 Risk assessment variable
V15 10.96 Ratio V3/V2
V3 9.68 Variable relating to the amount of the request

Table 7: Variable importance of the XGB used for the ATM

performance is significantly lower than that of its competitors for this case study. XGB
performs better, but it is poorly calibrated, unlike the other four learning models (see Figure
7).

In figure 8, we observe that the estimated most important functions are close for the
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Train AUC Test AUC

XGB 90.28% 89.38%
GAM 81.67% 81.37%
EBM 88.15% 87.73%
Binarsity 87.68% 86.41%
Distilltrees without auto-calibration 87.95% 87.41%
Distilltrees 87.06% 86.70%

Table 8: Comparison results based on AUC

Figure 7: Predicted probabilities vs oberved probabilities for the different learning models

four learning additive models for the variables V2, V12, V17 and V3. But for V15, GAM’s
estimation is quite different from the other methods. GAM proposes higher values for the
support of the variable and much lower values near the end of the support. We also note
that Distilltrees provides smoother trajectories than EBM and the GLM with binarsity.

These functions were passed on to Allianz trade’s experts, who were able to compare their
business experience with the shapes of the estimated functions. They were fairly convinced
of the form provided by Distilltrees for these most important variables. Interpretable credit
insurance models are essential for risk management experts because they enhance trans-
parency, facilitate understanding, enable model validation, support regulatory compliance,
guide risk mitigation strategies, and improve overall risk management practices.
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Figure 8: Feature shapes learned using GAM with splines, EBM, Distill tree and GLM with
binarsity penalization

5 Conclusion
In this paper, we propose a new learning model for the shape functions of a GAM model,
named Distilltrees. It is based on the idea that it is possible to exploit the knowledge provided
by an ATM model to tailor the covariates of GLMs. By then using a bagging technique and
an autocalibration procedure, we obtain a learning model as efficient as an EBM or as a
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regression model with a binarsity penalty. The advantage of our Distilltrees approach is that
it does not require any hyper-parameters, since its predictions are entirely deduced from the
results of the ATM model.

Distilltrees is an interpretable model with excellent performance for tasks such as regres-
sion and classification. Users can choose their model for the ATM (random forest, gradient
boosting and variants), or even combine several models with stacking strategies and then
use the DistillTrees procedure to obtain shape functions that they can then interpret with
their own experience.
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