
D E T
R A N
O T E

D E T R A  N O T E  2 0 2 3 - 5

W A S S E R S T E I N  B O O S T I N G  T R E E S 
A L G O R I T H M  F O R  C O U N T  D AT A

W I T H  A P P L I C AT I O N  T O  C L A I M  F R E Q U E N C I E S 
I N  M O T O R  I N S U R A N C E

M i c h e l  D e n u i t ,  J u l i e n  T r u f i n  a n d  H a r r i s o n  V e r e l s t



The content of the Detra Notes for a pedagogical use only. Each business case is 
so specific that a careful analysis of the situation is needed before implementing 
a possible solution. Therefore, Detralytics does not accept any liability for any 
commercial use of the present document. Of course, the entire team remain 
available if the techniques presented in this Detra Note required your attention.

D I S C L A I M E R

Detralytics
Avenue du Boulevard 21 Box 5 - 1210 Bruxelles (Belgium)

1-7 Cour Valmy, Le Belvédère - 92800 Puteaux (France)
www.detralytics.com
info@detralytics.eu



This paper proposes a variant of the well-known boosting trees algorithm to estimate condi-
tional distributions. Since regression trees partition observations into subgroups, the corre-
sponding empirical distributions can be used to define the splitting criterion. Precisely, the 
parametric approach using Poisson deviance is replaced with a non-parametric one maxi-
mizing probabilistic distances between empirical distributions in child nodes. Proceeding in 
this way, the actuary obtains an estimated conditional distribution for the response, from which 
a conditional mean can be derived as well as any other quantity of interest in risk management. 
The numerical performances of the proposed method are assessed with simu-lated data while 
a case study demonstrates its usefulness for insurance applications.

Keywords: Wasserstein distance, regression trees, boosting, conditional distribution, count 
data.
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1 Introduction

The present paper proposes to use probabilistic distances in the splitting criterion to grow
regression trees, in a boosting approach. Boosting emerged from the field of machine learn-
ing and became rapidly popular among actuaries. Broadly speaking, boosting is an iterative
procedure building the score sequentially, adding terms that weakly improve on the estima-
tions obtained from the preceding step. Regression trees with limited depth are often used
as weak learners in insurance studies, following Friedman (2001). We refer the reader to
Breiman et al. (1984) for a general introduction to trees.

Boosting requires the specification of a loss function to be optimized for estimating the
score. In that respect, actuaries generally adopt a parametric approach by selecting loss
functions corresponding to negative log-likelihood, or deviance functions. For count data,
Poisson or Negative Binomial distributions are often used to study numbers of claims re-
ported by policyholders to their insurer. We refer the readers to Denuit et al. (2020) for an
extensive treatment of boosting in the context of insurance.

Since trees partition the database in groups of observations corresponding to terminal
leaves, many other quantities of interest can be computed from their empirical distribution,
not only conditional means. Also, considering that trees produce estimated distributions
in each terminal leave opens the door to new partition rules based on distances between
the resulting empirical distributions. Chapter 9 in Denuit et al. (2005) offers a general
presentation of the topic with applications to actuarial science. Probability metrics have been
extensively used in risk theory, to assess the quality of the approximation of the individual
model by its collective counterpart. Here, the idea is to split a group in two subgroups to
make the corresponding empirical distributions the furthest apart according to some relevant
probabilistic distance.

Probabilistic distances have already been used in combination with regression trees, con-
sidering random forests. Du et al. (2021) proposed to adapt Breiman’s original splitting
criterion in terms of Wasserstein distance between empirical distributions. Their Wasser-
stein random forest algorithm then produces an estimate of the conditional distribution
function, allowing the actuary to derive a variety of quantities of interest, not just the condi-
tional mean. Given the excellent performances of boosting algorithms in insurance studies,
the present paper proposes a Wasserstein boosting trees algorithm. Instead of averaging (in
the sense of probabilistic mixtures) estimation obtained from a large number of trees, the
conditional distribution is learned sequentially, by updating estimation at previous step.

The remainder of this paper is organized as follows. Section 2 recalls probabilistic dis-
tances, with special emphasis on the Wasserstein distance that has been successfully used to
grow trees by Du et al. (2021). Section 3 then proposes a new boosting algorithm adopting
this distance in the splitting criterion. Section 4 illustrates the numerical performances of
this new approach on simulated data. A case study with motor insurance claim frequencies
is performed in Section 5. The final Section 6 briefly concludes the paper, summarizing the
main findings and discussing possible extensions.
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2 Wasserstein distance

Probability metrics, including the Wasserstein one, have successfully been used in actuarial
science to assess the accuracy of the approximation of the individual model by its collective
counterpart. Given two random variables V and W with respective probability distribu-
tions πV and πW , recall that the Wasserstein distance W , also known as the Dudley or
Kantorovitch distance, is defined as

W(πV , πW ) =

∫ ∞
−∞

∣∣F V (t)− FW (t)
∣∣dt =

∫ 1

0

∣∣F−1
V (u)− F−1

W (u)
∣∣du

where F V = 1 − FV denotes the excess function corresponding to the distribution function
FV of V and where the quantile function F−1

V is defined for a probability level u as

F−1
V (u) = inf{v ∈ R|FV (v) ≥ u}.

Since the representation W(πV , πW ) = E[|F−1
W (U) − F−1

V (U)|] holds true with U uniformly
distributed over the unit interval, W(πV , πW ) appears to be the lower bound on E[|K − L|]
over all random couples (K,L) with marginal distribution functions FV and FW (attained
when K and L are perfectly positively dependent, or comonotonic).

For two counting random variables M and N with respective probability distributions
πM and πN , the Wasserstein distance W can be simply rewritten as

W(πM , πN) =
∞∑
j=0

∣∣FM(j)− FN(j)
∣∣.

It can easily be computed when M and N only assume a few positive values, as it is the case
for claim frequencies at policy-level in personal lines. The series appearing in W(πM , πN)
then reduces to just a few terms and is fast to compute.

Property 9.6.3 in Denuit et al. (2005) shows thatW reduces to the difference of expecta-
tions under stochastic dominance. Recall that N is smaller than M in stochastic dominance,
denoted as N�STM , when the inequality P[N > t] ≤ P[M > t] holds for all real t. It is then
easy to see that

N�STM ⇒ W(πM , πN) =

∫ 1

0

(
F−1
M (u)− F−1

N (u)
)
du = E[M ]− E[N ].

Wasserstein distance thus reduces to the difference in pure premiums in that case. For
instance, if N obeys the Poisson distribution with mean λ1 and M obeys the Poisson distri-
bution with mean λ2,

λ1 < λ2 ⇒ N�STM ⇒W(πM , πN) = λ2 − λ1.

Considering claim counts M and N , the Wasserstein distance is the sum, over each
possible claims number value j, of the difference in probability to report strictly more than
j claims. In a frequency context, one would like to be able to distinguish policyholders
with low probability to have claims or low probability to have a large number of claims
with policyholders with high probability to have one or more than one claim. Using the
Wasserstein distance in this context thus seems to be appealing. Since Poisson distributions
are ordered with respect to �ST in their mean parameter, maximizing Wasserstein distance
amounts to maximize differences in expected claim frequencies.
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3 Wasserstein boosting trees

3.1 Setting

Supervised learning aims to provide an estimation of the conditional expectation µ(x) =
E [Y |X = x] for a response Y and a set of features X = (X1, . . . , Xp) ∈ χ ⊆ Rp. In many
applications of practical relevance, the additional information encoded in the conditional
distribution function FY (·|x) defined as FY (y|x) = P[Y ≤ y|X = x] is also of great interest.
Du et al. (2021) propose natural variants of random forests to estimate FY (·|x), called
Wasserstein random forests. In this paper, we present a variant of boosting trees to estimate
FY (·|x) for count data. Precisely, the response Y is assumed to be discrete with values in
N = {0, 1, 2, . . .}. We denote by π(x, ·) the probability mass function associated with the
conditional distribution function FY (·|x), i.e. π(x, k) = P[Y = k|X = x], k ∈ N. We aim
to estimate the conditional probabilities π(x, k) using a boosting approach given a data set
D = {(yi,xi), i = 1, . . . , n}.

We denote by M the number of trees in the ensemble and for 1 ≤ m ≤ M , let Θm be
the canonical random variable which fully captures the randomness of the m-th tree. Each
decision tree is built on a random sample of the training set D, denoted D∗(Θm), taken
without replacement. The fraction of training set used at each iteration to produce the
random samples is the bagging fraction and is denoted by α. A typical value for α is 0.5.

We denote by χj(x)(Θm) the subspace of the feature space χ induced by the m-th tree
that contains x and by N(x; Θm) the number of observations (yi,xi) in D∗(Θm) such that
xi ∈ χj(x)(Θm). As proposed in Du et al. (2021), the estimate π̂(x, k; Θm) of the conditional
probability π(x, k) at point x given by the m-th tree is the empirical measure associated
with the observations (yi,xi) that fall into the same terminal node as x (i.e. such that
xi ∈ χj(x)(Θm)), that is

π̂(x, k; Θm) =
∑

(yi,xi)∈D∗(Θm)

I
[
xi ∈ χj(x)(Θm), yi = k

]
N(x; Θm)

, (3.1)

where I[·] denotes the indicator function, equal to 1 if the event appearing in the brackets is
realized and to 0 otherwise.

3.2 Boosting algorithm

We initialize the boosting algoritm with the estimate

π̂(x, k; Θ0) =
1

n

n∑
i=1

I [yi = k] (3.2)

corresponding to the empirical distribution of the response. We thus start with the same
probability mass function for every x. The starting point (3.2) corresponds to the null model
comprising only an intercept initializing the boosting procedure.

From the initial estimate π̂(x, k; Θ0), we build the first tree and we compute the estimate
π̂(x, k; Θ1), as given by (3.1) with m = 1. The initial estimate π̂(x, k; Θ0) and the estimate
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from the first tree π̂(x, k; Θ1) are then combined to produce the estimate of the conditional
probability π(x, k) after the first tree of the boosting algorithm. We denote this estimate as
π̂(x, k; Θ[1]). The latter is given by

π̂(x, k; Θ[1]) = ĉ(x; Θ1)× β̂(x, k; Θ1)× π̂(x, k; Θ0), (3.3)

where β̂(x, k; Θ1) satisfies

1

N(x; Θ1)

∑
(yi,xi)∈D∗(Θ1)

I
[
xi ∈ χj(x)(Θ1)

] (
π̂(xi, k; Θ0)× β̂(x, k; Θ1)

)
= π̂(x, k; Θ1), (3.4)

that is,

β̂(x, k; Θ1) =
N(x; Θ1) π̂(x, k; Θ1)∑

(yi,xi)∈D∗(Θ1) I
[
xi ∈ χj(x)(Θ1)

]
π̂(xi, k; Θ0)

, (3.5)

and where the normalizing constant

ĉ(x; Θ1) =

(
∞∑
k=0

β̂(x, k; Θ1)× π̂(x, k; Θ0)

)−1

(3.6)

guarantees that
∑∞

k=0 π̂(x, k; Θ[1]) = 1. Similarly to how the score in the classical Boosting

algorithm is updated at each step, the function β̂(x, k; Θ1) defined in (3.5) corrects the initial
estimate π̂(x, k; Θ0) with the information π̂(x, k; Θ1) gathered from the first tree to produce
the next estimate π̂(x, k; Θ[1]).

From the estimate after the first tree π̂(x, k; Θ[1]), we build the second tree and compute
from this second tree the estimate π̂(x, k; Θ2). Similarly to the first step, π̂(x, k; Θ[1]) is up-
dated by π̂(x, k; Θ2) to produce the estimate of the conditional probability π(x, k) resulting
from the first two trees. This estimate is denoted as π̂(x, k; Θ[2]) and is given by

π̂(x, k; Θ[2]) = ĉ(x; Θ2)× β̂(x, k; Θ2)× π̂(x, k; Θ[1]), (3.7)

where β̂(x, k; Θ2) satisfies

1

N(x; Θ2)

∑
(yi,xi)∈D∗(Θ2)

I
[
xi ∈ χj(x)(Θ2)

] (
π̂(xi, k; Θ[1])× β̂(x, k; Θ2)

)
= π̂(x, k; Θ2), (3.8)

that is,

β̂(x, k; Θ2) =
N(x; Θ2) π̂(x, k; Θ2)∑

(yi,xi)∈D∗(Θ2) I
[
xi ∈ χj(x)(Θ2)

]
π̂(xi, k; Θ[1])

, (3.9)

and where the normalizing constant

ĉ(x; Θ2) =

(
∞∑
k=0

β̂(x, k; Θ2)× π̂(x, k; Θ[1])

)−1

(3.10)
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guarantees that
∑∞

k=0 π̂(x, k; Θ[2]) = 1.
In general, let Θ[m] = (Θ1, . . . ,Θm), m = 1, . . . ,M and Θ[0] = Θ0. The estimate of

the conditional probability π(x, k) produced by the first m trees of the boosting algorithm,
denoted π̂(x, k; Θ[m]), is given by

π̂(x, k; Θ[m]) = ĉ(x; Θm)× β̂(x, k; Θm)× π̂(x, k; Θ[m−1]), (3.11)

where β̂(x, k; Θm) satisfies

1

N(x; Θm)

∑
(yi,xi)∈D∗(Θm)

I
[
xi ∈ χj(x)(Θm)

] (
π̂(xi, k; Θ[m−1])× β̂(x, k; Θm)

)
= π̂(x, k; Θm),

(3.12)
that is,

β̂(x, k; Θm) =
N(x; Θm) π̂(x, k; Θm)∑

(yi,xi)∈D∗(Θm) I
[
xi ∈ χj(x)(Θm)

]
π̂(xi, k; Θ[m−1])

, (3.13)

and where the normalizing constant

ĉ(x; Θm) =

(
∞∑
k=0

β̂(x, k; Θm)× π̂(x, k; Θ[m−1])

)−1

(3.14)

guarantees that
∑∞

k=0 π̂(x, k; Θ[m]) = 1.
At iteration m, the first m−1 trees produce the estimate π̂(x, k; Θ[m−1]) of the conditional

probability π(x, k) and the m-th tree provides the estimate π̂(x, k; Θm) of π(x, k). These two
estimates are then combined as described in (3.11) and (3.12) to produce the new estimate
π̂(x, k; Θ[m]) of π(x, k) resulting from the first m trees. Contrary to π̂(x, k; Θ[m−1]), the
new estimate π̂(x, k; Θ[m]) guarantees that its average over the observations that fall into a
terminal node j of the m-th tree corresponds to the empirical estimate π̂(x, k; Θm) associated
with that terminal node j.

3.3 Splitting rule

The splitting criterion that is maximized at each node of the m-th tree is based on the
Wasserstein distance. Suppose that the node under consideration in the m-th tree consists
in a subset φ of the feature space χ. Hence, any standardized binary split defines a partition
φL ∪φR of φ. Let N (resp. NL and NR) be the number of observations in D∗(Θm) such that
xi ∈ φ (resp. xi ∈ φL and xi ∈ φR). The splitting criterion we consider here takes the form

L(φL, φR) =
NL

N
W(π̂L, π̂

[m−1]
L ) +

NR

N
W(π̂R, π̂

[m−1]
R ), (3.15)

where

π̂
[m−1]
L (k) =

1

NL

∑
(yi,xi)∈D∗(Θm)

I [xi ∈ φL] π̂(xi, k; Θ[m−1]) (3.16)
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π̂
[m−1]
R (k) =

1

NR

∑
(yi,xi)∈D∗(Θm)

I [xi ∈ φR] π̂(xi, k; Θ[m−1]) (3.17)

and

π̂L(k) =
1

NL

∑
(yi,xi)∈D∗(Θm)

I [xi ∈ φL, yi = k] (3.18)

π̂R(k) =
1

NR

∑
(yi,xi)∈D∗(Θm)

I [xi ∈ φR, yi = k] . (3.19)

At each node of the m-th tree, the best split maximizes the Wasserstein distances between
the probability distributions already estimated from the first m− 1 trees and the empirical
distributions resulting from the split. The partition φL∪φR of φ obtained from our splitting
criterion is such that the current estimates π̂

[m−1]
L and π̂

[m−1]
R are “the most different” from

the empirical estimates π̂L and π̂R, respectively, as measured by the Wasserstein distance.
The m-th tree is thus built in a way that the resulting partition χj(Θm) of the feature space
highlights subsets of the feature space for which the current estimates obtained after m− 1
iterations are not satisfactory and hence need to be readjusted.

3.4 Shrinkage parameters

In boosting, it is often helpful to slow down the learning speed by adding only a small amount
of the fit of the best-performing base-learner to the current additive score. This is achieved
by multiplying the new effect entering the score with a shrinkage coefficient (a typical value is
0.1). This also appears to be useful in the Wasserstein boosting trees algorithm, as explained
next.

The idea is to decrease β̂(x, k; Θm) to slow down the learning process. Formally, let τ1

and τ2 be such that 0 ≤ τ1 < 1 and τ2 > 1. Define

β̂ shrink(x, k; Θm) = min
(

max
(
β̂(x, k; Θm), τ1

)
, τ2

)
, (3.20)

where β̂(x, k; Θm) is given in (3.13). The updating procedure then becomes

π̂(x, k; Θ[m]) = ĉ(x; Θm)× β̂ shrink(x, k; Θm)× π̂(x, k; Θ[m−1]), (3.21)

with

ĉ(x; Θm) =

(
∞∑
k=0

β̂ shrink(x, k; Θm)× π̂(x, k; Θ[m−1])

)−1

. (3.22)

With the proposed shrinkage procedure, we have τ1 ≤ β̂ shrink(x, k; Θm) ≤ τ2, so that we
slow down the learning rate of the boosting procedure.
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4 Numerical illustrations with simulated data sets

In this section, we illustrate the newly proposed Wasserstein boosting trees on several ex-
amples. In the first two examples, we show based on simple distribution functions that the
estimated distributions obtained from Wasserstein boosting trees converge towards the true
distributions. Then, we compare Wasserstein boosting trees with gradient boosting trees on
two examples. In the first example, we simulate the numbers of claims from Poisson dis-
tributions and compare the performances of the Wasserstein boosting trees algorithm with
the gradient boosting trees algorithm using the Poisson deviance as loss function. The sec-
ond example demonstrates the advantage of the Wasserstein Boosting trees algorithm over
the gradient boosting trees algorithm by simulating the numbers of claims from Negative
Binomial distributions with the same mean.

4.1 Example 1

In this very simple example, three categorical features X = (X1, X2, X3) are supposed to be
available:

- X1 = Age: policyholder’s seniority with two levels, labeled as young (y) or old (o),
with 50% of the portfolio in each level;

- X2 = Gender: policyholder’s gender with two levels, labeled as female (f) or male (m),
with 50% of the portfolio in each level;

- X3 = Sport: whether the policyholder’s car is a sports car or not with two levels,
labeled as yes or no, with 50% of the portfolio in each level.

The eight risk classes are depicted in Table 1. The variables X1, X2 and X3 are assumed to
be mutually independent.

The response Y is supposed to be the number of claims. The conditional probabilities
π(x, k) are given in Table 1. The eight risk classes have the same possible values but have
different associated probabilities. The associated probabilities are arbitrarily chosen. In
this example, the true conditional probabilities π(x, k) are thus known and we can simulate
realizations of the random vector (Y,X). Specifically, we generate n = 10000 independent
realizations (y1,x1), (y2,x2), . . . of (Y,X). A simulation represents a policy that has been
observed during a whole year.

For each tree, a sequence of standardized binary splits is made recursively by maximizing
the splitting rule discussed in Section 3.3. The size of the trees is controlled by the interaction
depth ID. Trees with an interaction depth equal to ID correspond to trees with ID non-
terminal nodes. By setting ID = 1, only single-split regression trees are produced, which
allows capturing only the main effects of the features in the score. For ID = 2, two-way
interactions are permitted, and for ID = 3, three-way interactions are allowed, and so on.
A larger value of ID allows the model to learn deeper patterns in the data. In this way the
m-th tree partitions the feature space χ into disjoint subsets {χj(Θm), j = 1, . . . , ID + 1}.

We run the Wasserstein boosting trees algorithm with ID ∈ {1, 2, 3} and shrinkage pa-
rameters τ1 = 1− τ and τ2 = 1 + τ with τ ∈ {0.5, 0.05}. The results are depicted in Figure
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π(x, k)
x k = 0 k = 1 k = 2 k = 3 k = 4

Class 1 X1 = y, X2 = m, X3 = yes 0.400 0.400 0.100 0.050 0.050
Class 2 X1 = y, X2 = m, X3 = no 0.650 0.150 0.100 0.050 0.050
Class 3 X1 = o, X2 = m, X3 = yes 0.600 0.300 0.050 0.025 0.025
Class 4 X1 = o, X2 = m, X3 = no 0.800 0.100 0.050 0.025 0.025
Class 5 X1 = y, X2 = f , X3 = yes 0.500 0.300 0.050 0.100 0.050
Class 6 X1 = y, X2 = f , X3 = no 0.750 0.050 0.050 0.100 0.050
Class 7 X1 = o, X2 = f , X3 = yes 0.700 0.175 0.050 0.050 0.025
Class 8 X1 = o, X2 = f , X3 = no 0.850 0.050 0.025 0.050 0.025

Table 1: π(x, k) for the eight risk classes.

1 (for ID = 1), Figure 2 (for ID = 2) and Figure 3 (for ID = 3). For each risk profile x,
we show the Wasserstein distance between the true conditional probabilities π(x, k) and the
estimated ones π̂(x, k; Θ[m]) with respect to the number of iterations m. With ID ∈ {1, 2},
one sees that for any risk class, the estimate π̂(x, k; Θ[m]) does not allow to recover the
true conditional probability π(x, k) whatever the number of iteration m. For ID = 3, one
sees that for any risk class, the estimate π̂(x, k; Θ[m]) tends to the conditional probability
π(x, k) in the sense that W(π(x, .), π̂(x, .; Θ[m])) tends to 0 after 10 iterations for τ = 0.5
and after 30 iterations for τ = 0.05. This means that for ID = 3, starting from the empirical
distribution of the response for every x and correcting after each fitted tree the previously
estimated conditional distribution π̂(x, .; Θ[m−1]) with the information coming from the new
fitted tree π̂(x, .; Θm), we recover the true conditional probability π(x, k). The smaller the
shrinkage parameter is, the slowest the learning rate and the smoothest the convergence as
it prevents large corrections at each step.

(a) τ = 0.5 (b) τ = 0.05

Figure 1: Wasserstein distance between π(x, .) and π̂(x, .; Θ[m]) (obtained with ID = 1) with
respect to the number of trees m for the eight risk classes.

4.2 Example 2

We consider the same example as in the previous section, except that the conditional prob-
abilities π(x, k) for risk classes 7 and 8 are now given in Table 2. Compared to Table 1,
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(a) τ = 0.5 (b) τ = 0.05

Figure 2: Wasserstein distance between π(x, .) and π̂(x, .; Θ[m]) (obtained with ID = 2) with
respect to the number of trees m for the eight risk classes.

(a) τ = 0.5 (b) τ = 0.05

Figure 3: Wasserstein distance between π(x, .) and π̂(x, .; Θ[m]) (obtained with ID = 3) with
respect to the number of trees m for the eight risk classes.

only the values 0 and 1 are allowed for Y for risk classes 7 and 8 in Table 2. The results are
shown in Figure 4 for ID = 3. Again, one sees that the Wasserstein boosting trees algorithm
enables to recover the true conditional probabilities π(x, k) for all risk classes.

π(x, k)
x k = 0 k = 1 k = 2 k = 3 k = 4

Class 7 X1 = o, X2 = f , X3 = yes 0.700 0.300 0.000 0.000 0.000
Class 8 X1 = o, X2 = f , X3 = no 0.950 0.050 0.000 0.000 0.000

Table 2: π(x, k) for risk classes 7 and 8.

4.3 Comparison with the gradient boosting tree algorithm

The Wasserstein boosting trees algorithm enables to estimate the conditional probabilities
π(x, k) in a non-parametric way. In particular, it allows the actuary to estimate the con-
ditional expectation µ(x) from the corresponding conditional distribution. In insurance
pricing, actuaries generally apply learning procedures like the gradient boosting trees algo-
rithm to estimate the conditional expectation µ(x), assuming that the responses Y follows
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(a) τ = 0.5 (b) τ = 0.05

Figure 4: Wasserstein distance between π(x, k) and π̂(x, k; Θ[m]) (obtained with ID = 3)
with respect to the number of trees m for the eight risk classes.

a counting distribution such as Poisson or Negative Binomial. In this section, we compare
the results obtained with the Wasserstein boosting trees algorithm proposed in this paper
to the ones derived with the gradient boosting trees algorithm using the Poisson deviance
as loss function.

4.3.1 Example 1 : response obeying Poisson distribution

We consider an example in car insurance with the following four features:

- X1 = Gender: policyholder’s gender with two levels, labeled as female (f) or male (m),
with 50% of the portfolio in each level;

- X2 = Sport: whether the policyholder’s car is a sports car or not, with two levels (yes
or no) and 50% of the portfolio in each level;

- X3 = Split: whether the policyholder splits its annual premium or not, with two levels
(yes or no) and 50% of the portfolio in each level;

- X4 = Age: policyholder’s age (integer values from 18 to 65) with the same proportion
1/48 of the portfolio in each value.

The features X1, X2, X3 and X4 are assumed to be mutually independent.
The response Y is supposed to be the number of claims. Given X = x, Y is assumed to

be Poisson distributed with expected claim frequency given by

µ(x) = 0.3× (1 + 0.1I [x1 = male])×
(

1 +
1√

x4 − 17

)
× (1 + 0.3 I [x2 = yes] I [18 ≤ x4 < 35]− 0.3 I [x2 = yes] I [45 ≤ x4 ≤ 65]) .

The true model µ(x) is known and we can simulate realizations of (Y,X). Specifically, we
generate n = 30 000 independent realizations of (Y,X). We use 80% of the observations
for training the models (training set) and 20% for assessing the performance of the models
(validation set).
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We run the Wasserstein boosting trees (henceforth abbreviated as WBT) algorithm and
the gradient boosting trees (henceforth referred to as GBT) algorithm with ID ∈ {2, 3, 4, 5},
a bag fraction α = 0.5 and shrinkage parameters τ1 = 1 − τ and τ2 = 1 + τ with τ ∈
{τa, τb, τc} = {0.5, 0.1, 0.05} for the WBT algorithm and τ ∈ {τa, τb, τc} = {1, 0.1, 0.05} for
the GBT algorithm. GBT is fitted using the Poisson deviance loss.

Out-of-sample Poisson deviance

To compare the predictive accuracy of both algorithms, we compute the Poisson deviance
on the validation set. Figures 5a and 5b display out-of-sample Poisson deviance for GBT
and WBT. We observe that in most cases WBT outperforms GBT in the sense that the out-
of-sample deviance for WBT is smaller than the one for the corresponding GBT. Figure 5b
shows that the number of trees required for WBT can be much smaller than the number of
trees for GBT. The lower the shrinkage parameter, the greater the difference of the number
of trees between both algorithms. As expected, for both methods, more trees are needed
when the shrinkage parameter is decreased.

(a) Poisson Deviance (b) Number of trees

Figure 5: Out-of-sample Poisson deviance and number of trees for GBT (in green) and WBT
(in red) for each set of parameters (ID, τ`), ` = a, b, c.

Estimated means

We compare the estimated conditional mean µ̂(x) to the true one µ(x) for each risk class.
For this comparison, we consider the best WBT and GBT models according to the out-of-
sample Poisson deviance, namely WBT with ID = 5, τ = 0.05 and M = 13 and GBT with
ID = 2, τ3 = 0.05 and M = 490.

Since x3 does not influence µ(x) in our example, we consider the following four groups:

• Group 1: Male driving a sports car;

• Group 2 : Male driving a regular car;

• Group 3 : Female driving a sports car;

• Group 4 : Female driving a regular car.
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For each group, Figures 6a to 6d display the estimated means with respect to the age of
the policyholder for the best WBT and GBT together with the true means. One sees that
both models accurately estimate the conditional means µ(x). For most values of x, both
estimated conditional means are closed to each other and closed to the true conditional mean
µ(x).

(a) Group 1 (b) Group 2

(c) Group 3 (d) Group 4

Figure 6: Estimated means with respect to the age for each group for WBT (in red) and
GBT (in green) together with the true means (in blue).

Estimated conditional distributions

The GBT and WBT algorithms perform similarly in this example when it comes to estimating
the conditional mean µ(x). However, WBT does not directly estimate the conditional mean
µ(x), it rather focuses on the estimation of the conditional distribution π(x, .) without
imposing any rigid parametric assumption for π(x, .) whereas GBT assumes that the response
is Poisson distributed.

Let us now compare the estimated conditional distributions π̂WBT(x, .) obtained from the
WBT algorithm with the true Poisson distribution π(x, .) on the one hand, and the estimated
conditional distribution π̂GBT(x, .) obtained from the GBT algorithm (which assumes that
π(x, .) is Poisson) with the true Poisson distribution π(x, .) on the other hand. To do
so, we use the “average Wasserstein distance” computed on the validation set. For each
observation (yi,xi) of the validation set DV , we compute the Wasserstein distance between
its estimated conditional distribution π̂(xi, .) and its true conditional distribution π(xi, .),
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namely W1(π̂(xi, .), π(xi, .)). Then, the average Wasserstein distance is computed as

AW =
1

|DV |
∑

(yi,xi)∈DV

W(π̂(xi, .), π(xi, .)), (4.1)

where |DV | is the number of observations in DV .

(a) Average Wasserstein Distance AW (b) Number of trees

Figure 7: Comparison of minimum average Wasserstein Distance AW and corresponding
number of trees between WBT and GBT for each set of parameter (ID, τ`), ` = a, b, c.

As expected, we see in Figure 7a that GBT with a small shrinkage parameter outperforms
WBT since the true conditional distribution is Poisson (as assumed by the GBT algorithm).
However, the WBT algorithm, which is in essence non-parametric, also succeeds in estimating
the true Poisson distributions. Indeed, one sees that the average Wasserstein distance is
smaller than 0.03 in most cases, that is,

AW =
1

|DV |
∑

(yi,xi)∈DV

∞∑
j=0

∣∣Fπ̂WBT
(j)− Fπ(j)

∣∣ ≤ 0.03 in most cases.

The estimation is good in the sense that on average, the cumulative distribution function
estimated by WBT is close to the true cumulative distribution function.

Moreover, it is interesting to notice that the average Wasserstein distances and the out-
of-sample Poisson deviances reach their minimum values for a similar number of trees. This
can be seen in Figures 8a and 8b where we compare the out-of-sample Poisson deviance and
the average Wasserstein distance for two WBT models with ID = 2, τ = 0.05 and WBT
with ID = 5, τ = 0.05.

4.3.2 Example 2 : response obeying Negative Binomial distribution

Let us assume that conditionally on X, the response is no more Poisson distributed but
follows Negative Binomial distribution. This time, two different values xi and xj of X such
that µ(x1) = µ(x2) may have different associated distributions π(x1, .) and π(x2, .) since the
Negative Binomial distribution is governed by two parameters (the mean and the dispersion
parameter).

Consider a simple example with two categorical features, each one with only two levels,
say policyholder’s age (X1) either “young” or “old” and policyholder’s gender (X2) either

13



(a) ID = 2 and τ = 0.05 (b) ID = 5 and τ = 0.05

Figure 8: Comparison of the average Wasserstein distance (in red) and the out-of-sample
Poisson deviance (in green) for two models.

“male” or “female”. For each of the four risk classes, we assume that the corresponding
distribution π(x, .) follows a Negative Binomial (NB) distribution with the parameters given
in Table 3. The probability mass functions for each class are given on Figure 9. Under
Poisson assumption, risk classes 1-2 and 3-4 cannot be distinguished because mean responses
are equal. These risk classes nevertheless differ in their residual heterogeneity.

x π(x, .)
Class 1 X1 = y, X2 = m Y |X = x ∼ NB

(
1, 1

1+0.3

)
, such that E[Y |X = x] = 0.3

Class 2 X1 = o, X2 = m Y |X = x ∼ NB
(
1, 500

500+0.3

)
, such that E[Y |X = x] = 0.3

Class 3 X1 = y, X2 = f Y |X = x ∼ NB
(
1, 1

1+0.015

)
, such that E[Y |X = x] = 0.15

Class 4 X1 = o, X2 = f Y |X = x ∼ NB
(
1, 500

500+0.015

)
, such that E[Y |X = x] = 0.15

Table 3: π(x) for the four risk classes.

(a) Class 1 (green) and Class 2 (red) (b) Class 3 (blue) and Class 4 (orange)

Figure 9: Comparison of the probability mass function between Class 1 and Class 2 and
between Class 3 and Class 4.

Figure 10 shows the Wasserstein distance between the estimated conditional distribution
π̂(x, .) and the true Negative Binomial distribution π(x, .) for the four risk classes. We see
that the WBT algorithm enables to accurately estimate the true conditional distribution
for any risk class (after 20 iterations, W (π̂(x, .), π(x, .)) = 0 for all x). If we use the GBT
algorithm with the typical Poisson assumption for the condition distribution π(x, .), we
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cannot distinguish risk profiles of Class 1 (resp. Class 3) from risk profiles of Class 2 (resp.
Class 4), as shown in Figure 11.

Figure 10: Wasserstein distance between the estimated distribution π̂(x, .) and the true
distribution π(x, .) for the four risk classes with ID = 2 and τ2 = 0.01.

Figure 11: Estimated mean µ̂(x) with the GBT algorithm for the four risk classes with
ID = 2 and τ2 = 0.01.

5 Case study with claim frequencies in motor insur-

ance

5.1 MTPL data set

Let us consider the freMTPL2freq data set comprised in the CASdatasets package in R.
It contains 168 125 observations (observed over exactly one year) of the number of claims
(response Y ) in a French motor third-party liability insurance portfolio, together with nine
features (X = (X1, . . . , X9)). The latter correspond to several characteristics related to the
policyholder (age, density of inhabitants in the home city, region, area, bonus-malus) and his
or her vehicle (power, age, brand, fuel type). We refer to Noll et al. (2018) for an accurate
description of the data set.
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The training set comprising 80% of the data is used to train the models. The validation
set with the remaining 20% of the data allows us to compare the different models on data
that have not been used to train the models.

We run the WBT and GBT algorithms with ID ∈ {2, 3, 4, 5}, a bag fraction α = 0.5 and
shrinkage parameters τ1 = 1 − τ and τ2 = 1 + τ with τ ∈ {τa, τb, τc} = {0.5, 0.1, 0.05} for
WBT and τ ∈ {τa, τb, τc} = {1, 0.1, 0.05} for GBT. Moreover, GBT is fitted with the Poisson
deviance loss.

5.2 Out-of-sample Poisson deviance

Figures 12a and 12b show out-of-sample Poisson deviance for GBT and WBT. One sees
that the WBT algorithm outperforms the GBT algorithm in any case. This demonstrates
the outstanding performances of the newly proposed WBT approach which achieves lower
out-of-sample Poisson deviance compared to GBT algorithm whereas the latter minimizes
Poisson deviance while the former maximizes Wasserstein distance. In addition, we observe
again that the number of trees for WBT is much smaller than the number of trees for GBT.

(a) Poisson Deviance (b) Number of trees

Figure 12: Out-of-sample Poisson deviance and number of trees for GBT (in green) and
WBT (in red) for each set of parameter (ID, τ`), ` = a, b, c.

5.3 Overdispersion

The WBT algorithm does not make any assumption on the underlying conditional distribu-
tion of the number of claims whereas GBT assumes that claim counts are Poisson distributed.
Let us now test whether the observations in the final nodes of the Wasserstein boosting trees
are Poisson distributed. To this end, we use the Poisson dispersion test which compares the
sample mean to the sample variance. If the sample mean is very different from the sample
variance, then the number of claims in the terminal node under consideration does not follow
a Poisson distribution. The Poisson dispersion test statistics is defined as

Pn =
n∑
i=1

(yi − ȳ)2

ȳ
, (5.1)

where ȳ is the sample mean and n is the sample size. This test statistics approximately
obeys the Chi-Square distribution with n− 1 degrees of freedom. The null hypothesis that
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the number of claims in the node under consideration is Poisson distributed is rejected for
large values of Pn.

Table 4 displays rejection frequencies for each model (at level 5%) in the terminal nodes
of the trees of the ensemble. It is interesting to notice that the smaller the trees (i.e. the
smaller the interaction depth), the larger the frequency of rejection of the null hypothesis.
This means that the more data we have in a terminal node, the more the Poisson hypothesis
is rejected. With a 5% confidence level, when we have an ID = 5 or 6 terminal nodes, the
Poisson distribution is rejected one time out of three. This probability doubles when we
only have 3 terminal nodes. At a global level, the Poisson hypothesis for the claim count
distribution does not seem to be valid. This is less obvious at a local level, when less data
are available.

Model Poisson rejection frequency
ID = 2, τ1 = 0.5 63%
ID = 2, τ2 = 0.1 62%
ID = 2, τ3 = 0.05 63%
ID = 3, τ1 = 0.5 48%
ID = 3, τ2 = 0.1 52%
ID = 3, τ3 = 0.05 54%
ID = 4, τ1 = 0.5 39%
ID = 4, τ2 = 0.1 45%
ID = 4, τ3 = 0.05 43%
ID = 5, τ1 = 0.5 32%
ID = 5, τ2 = 0.1 31%
ID = 5, τ3 = 0.05 31%

Table 4: Frequency of rejection for the null hypothesis in the terminal nodes of the trees of
the ensemble.

6 Conclusion

This paper proposes a new boosting algorithm for claim counts, based on Wasserstein dis-
tance. Compared to existing procedures targeting conditional means, WBT produces esti-
mated conditional distributions which allow the actuary to derive any estimation of interest.
When applied to simulated data and a classical industry data base, WBT shows excellent
performances compared to GBT. The non-parametric nature of the newly proposed WBT
allows the actuary to recover patterns present in the data beyond conditional means, such
as residual heterogeneity compared to Poisson distribution for instance. In our examples,
WBT even outperforms GBT in terms of Poisson deviance despite GBT precisely optimizes
that metric.

The Poisson distribution has been extended in different ways to accommodate the spe-
cific aspects of claim frequency distributions: Overdispersed Poisson or Poisson mixtures,
including Negative Binomial, have been proposed to account for overdispersion, Zero-inflated
Poisson or Hurdle models to account for the probability mass at zero, etc. Machine learning
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tools have been developed for each model but the approach remains parametric and thus
exposes actuaries to model risk. The latter has been extensively studied for the conditional
mean, showing that Poisson regression delivers consistent estimates even if responses do not
obey the Poisson distribution as long as the conditional mean is correctly specified. How-
ever, this is not necessarily true for other parameters of interest, like the no-claim probability
extensively used in underwriting. Being non-parametric by nature, the WBT algorithm pro-
posed in this paper avoids this pitfall and can be used to challenge the conclusions obtained
from parametric regression.

In this paper, we restricted ourselves to integral probability metrics because they turn out
to be computed more rapidly compared to metrics defined as supremum (like Kolmogorov
distance, for instance, corresponding to the largest absolute difference between respective
distribution functions). Also, we paid particular attention to their expressions with count
data. Of course, there are other candidates for being used as distance in splitting criterion.
For counting random variables M and N , the Wasserstein distance is closely related to the
total-variation distance T V(πM , πN) given by

T V(πM , πN) =
∞∑
k=0

∣∣P[M = k]− P[N = k]
∣∣.

When M and N refer to claim frequencies at policy-level in personal lines, the series reduces
to just a few terms and is thus easy to compute. Proposition 9.6.5 in Denuit et al. (2005)
shows that T V(πM , πN) ≤ 2W(πM , πN).

Besides W and T V , the integrated stop-loss distance is another candidate to assess the
proximity of two distributions in insurance studies. The integrated difference in stop-loss
premiums has traditionally been used to measure the distance between two risks with finite
variances in the actuarial literature. Given two random variables V and W , the integrated
stop-loss distance ISL is given by

ISL(πV , πW ) =

∫ ∞
−∞

∣∣E[(V − t)+]− E[(W − t)+]
∣∣dt,

where the integrand is the absolute difference of the stop-loss transforms of V and of W .
This distance is easy to compute under stop-loss or convex order since Proposition 9.8.2 in
Denuit et al. (2005) shows that

(i) If E[(V − t)+] ≤ E[(W − t)+] holds for all t then ISL(πV , πW ) = 1
2

(
E[W 2]− E[V 2]

)
.

(ii) If E[(V − t)+] ≤ E[(W − t)+] holds for all t and E[V ] = E[W ] then ISL(πV , πW ) =
1
2

(
Var[W ]− Var[V ]

)
.

Considering Poisson mixtures, these results apply when mixing distributions satisfy the
conditions appearing in (i)-(ii). Under (ii), we see that ISL coincides with the classical
splitting criterion used in regression trees.

This paper thus opens a new approach to statistical learning in insurance, replacing
deviance with probabilistic distance. Depending on the application, the actuary is free
to select the most appropriate distance. Considering insurance ratemaking, Wasserstein
distance appears to be a natural candidate complying with intuition.
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