
D E T
R A N
O T E

D E T R A N O T E 2 0 2 3 - 3

B O O S T E D P O I S S O N
R E G R E S S I O N T R E E S :

A G U I D E T O T H E B T P A C K A G E I N R

B y G i r e g W i l l a m e , J u l i e n T r u f i n a n d M i c h e l D e n u i t

The content of the Detra Notes for a pedagogical use only. Each business case is
so specific that a careful analysis of the situation is needed before implementing
a possible solution. Therefore, Detralytics does not accept any liability for any
commercial use of the present document. Of course, the entire team remain
available if the techniques presented in this Detra Note required your attention.

D I S C L A I M E R

Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among
actuaries. Hainaut et al. (2022) established that boosting can be conducted directly on the
response under Tweedie loss function and log-link, by adapting the weights at each step. This
is particularly useful to analyze low counts (typically, numbers of reported claims at policy
level in personal lines). Huyghe et al. (2022) adopted this approach to propose a new boosting
machine with cost-complexity pruned trees. In this approach, trees included in the score
progressively reduce to the root-node one, in an adaptive way. This paper reviews these results
and presents the new BT package in R contributed by Willame (2022), which is designed
to implement this approach for insurance studies. A numerical illustration demonstrates the
relevance of the new tool for insurance pricing.

Keywords: Risk classification, Boosting, Adaptive Boosting, Regression Trees.

A B S T R A C T

1 Introduction andmotivation
Boosting emerged from the field of machine learning and became rapidly popular among
insurance analysts. In each iteration, boosting fits a base, or weak learner that improves the
fit of the overall model so that the ensemble arrives at an accurate prediction. Thus, the
score is not specified by the actuary and estimated at once, as in generalized linear models
(GLMs) or generalized additive models (GAMs) but it is built sequentially. In every boosting
iteration, only the best-performing base learner and hence the best-performing feature is
included in the final model. Also, only a small amount of the fit of the best-performing
base-learner is added to the current additive score. This is achieved by multiplying the new
effect entering the score with a shrinkage coefficient (a typical value is 0.1). Boosting is
particularly effective when base learners are trees of limited depth.

Boosting is often applied on gradients of the loss function, that is, on the gradients of
the deviance function in insurance applications. Instead of maximizing the log-likelihood
associated with the response, gradient boosting applies a least-squares principle on its gra-
dients. In this form, boosting has become very popular among data analysts and several
packages available in open-source software implement highly effective boosting algorithms.
There have been numerous applications of gradient boosting to insurance pricing in the last
decade. We refer the interested reader to Lee and Lin (2018) for an extensive review of the
different boosting algorithms that have been proposed so far, as well as to the references
listed in Hainaut et al. (2022).

However, gradient boosting beyond the Normal case typically faces the same problem
that lead to the adoption of GLMs for insurance applications. In Poisson regression for
instance, gradient boosting consists in fitting raw residuals (corresponding to numbers of
claims minus the expected claim frequencies) by least squares. Least-squares principle is
known to be outperformed by Poisson regression for low counts, as those encountered in
pricing personal lines. Indeed, for low expected claim frequencies, raw residuals are concen-
trated around integer values. For severities modeled by the Gamma distribution, gradients
obey a translated Gamma distribution, which can be markedly skewed and rules out the
least-squares principle. For general Tweedie response corresponding to compound Poisson
sums with Gamma-distributed terms, the abundance of zeroes and the mixture of Gamma
distributions for positive outcomes also result in highly asymmetric gradients and poor per-
formances of least-squares estimation. This suggests that applying the least-squares principle
on gradients is not effective and exposes actuaries to the same deficiency that led to the mas-
sive adoption of GLMs in the 1990s, in lieu of Gaussian linear models.

Hainaut et al. (2022) established that likelihood-based boosting can easily be achieved
when trees are used as weak learners under Tweedie loss with log-link, provided the responses
are re-weighted and re-scaled at each boosting step. Hence, responses can be used directly
and there is no need to replace them with gradients as long as Tweedie loss is adopted, with
log-link. This is the approach adopted in the present paper.

Standard boosting algorithm does not adapt along the sequence of scores produced by the
forward stagewise additive procedure. Instead of allowing for trees with constant interaction
depth at each iteration, it might be more powerful to let the complexity of the newly added
tree adapt to the structure remaining to be learned from the data. This is exactly the idea
leading to the ABT machine proposed by Huyghe et al. (2022), where trees added to the

1

score progressively adapt their complexity to the amount of information left to discover from
the data. Here, ABT stands for Adaptive Boosting Trees. This new approach also comes
with a great added benefit: the stopping criterion is then built inside the ABT algorithm,
since the score stops growing when the newly added tree reduces to the root-node one. A
small bag fraction can be used to avoid that the ABT machine gets trapped in a sub-optimal
solution when this occurs too early (but this seems to be needed only when interaction depth
is kept small, which is not required with the ABT machine).

The present paper presents the new BT package in R, contributed by Willame (2022). This
package implements boosting trees for Tweedie-distributed responses using log-link function
as derived by Hainaut et al. (2022), as well as the adaptive version proposed by Huyghe et al.
(2022). It allows actuaries to build predictive models and explore the influence of different
features on the response. The BT package in R is now available from CRAN where it can be
downloaded through install.packages(’BT’). See cran.r-project.org/package=BT.

The remainder of this paper is organized as follows. Sections 2-4 review the methodology.
The new package is described in Section 5. A numerical illustrations is proposed in Section 6
to demonstrate the capabilities of this new tool. It is shown there that BT package is highly
competitive for analyzing claim counts.

2 Insurance pricing
Consider a response Y and a set of features X1, . . . , Xp gathered in the vector X. The
dependence structure inside the random vector (Y, X1, . . . , Xp) is exploited to extract the
information contained in X about Y . In insurance pricing, the aim is to evaluate the pure
premium as accurately as possible. This means that the target is the conditional expectation
µ(X) = E[Y |X] of the response Y (claim number or claim amount) given the available
information X. Henceforth, µ(X) is referred to as the true (pure) premium. Notice that in
some applications, µ(X) only refers to one component of the pure premium. For instance,
working in the frequency-severity decomposition of insurance losses, µ(X) can be either the
expected number of insured events or the expected claim size, or severity.

The function x 7→ µ(x) = E[Y |X = x] is unknown to the actuary, and may exhibit a
complex behavior in x. This is why this function is approximated by a (working, or actual)
premium x 7→ π(x) with a relatively simple structure compared to the unknown regression
function x 7→ µ(x).

Let
D = {(y1, x1, ν1), (y2, x2, ν2), . . . , (yn, xn, νn)} , (2.1)

be the training set, where yi corresponds to the observed response for the ith record, the
vector xi gathers the corresponding features and νi is a known weight (the exposure to risk
for claim frequencies, for instance). The estimates, or fitted values π̂(x) for µ(x) are obtained
by minimizing the empirical loss on D.

2

Type Name
ξ < 0 Continuous -
ξ = 0 Continuous Normal
0 < ξ < 1 Non existing -
ξ = 1 Discrete Poisson
1 < ξ < 2 Mixed, non-negative Compound Poisson-Gamma
ξ = 2 Continuous, positive Gamma
2 < ξ < 3 Continuous, positive -
ξ = 3 Continuous, positive Inverse Gaussian
ξ > 3 Continuous, positive -

Table 3.1: Tweedie distributions.

3 Tweedie loss functions
In practice, actuaries often use distributions belonging to the Tweedie family together with
the log-link function for modeling responses. The log-link function is generally chosen be-
cause of the multiplicative structure it produces for the resulting estimates. In boosting, this
link function is retained because it ensures π̂ ≥ 0. Since Tweedie distributions are closed
under scaling, log-link allows the actuary to re-express boosting as an iterative procedure
acting on re-scaled and re-weighted responses.

The Tweedie class regroups the members of the Exponential Dispersion family having
power variance functions V (µ) = µξ for some ξ. Specifically, the Tweedie class contains
continuous distributions such as the Normal, Gamma and Inverse Gaussian distributions.
It also includes the Poisson and compound Poisson-Gamma distributions. Typically, the
Poisson distribution is used for modeling claim counts and the Gamma or Inverse Gaussian
distributions for claim severities. Compound Poisson-Gamma distributions can be used
for modeling annual claim amounts, having positive probability at zero and a continuous
distribution on the positive real numbers. We refer the reader to Delong et al. (2021) for a
through presentation of Tweedie models with applications to insurance.

Table 3.1 gives a list of all Tweedie distributions. Negative values of ξ gives continuous
distributions on the whole real axis. For 0 < ξ < 1, no member of the Exponential Dispersion
family exists. Only the cases ξ ≥ 1 are thus interesting for applications to insurance. From
e.g. Denuit et al. (2019a, Table 4.7 pp 153), Tweedie deviance loss function is given by

L(y, π̂(x)) =

(y − π̂(x))2 if ξ = 0 ,

2
(
y ln y

π̂(x) − (y − π̂(x))
)

if ξ = 1,

2
(
− ln y

π̂(x) + y
π̂(x) − 1

)
if ξ = 2,

2
(

max{y,0}2−ξ

(1−ξ)(2−ξ) − yπ̂(x)1−ξ

1−ξ
+ π̂(x)2−ξ

2−ξ

)
otherwise .

(3.1)

For ξ = 0, we recover the quadratic loss function whereas ξ = 1 and 2 correspond to the
Poisson and Gamma deviance functions, respectively.

3

4 Boosting trees

4.1 Forward stagewise additive modeling
Ensemble techniques assume structural models of the form

π(x) = g−1 (score(x)) = g−1
(

M∑
m=1

T (x; am)
)

, (4.1)

where g is the link function and T (x; am), m = 1, 2, . . . , M , are usually simple functions of
the features x, characterized by parameters am. In (4.1), the score is the function of features
x mapped to π(x) by the inverse of the link function g, that is,

score(x) =
M∑

m=1
T (x; am).

Consider the training set (2.1). Estimating score(x) appearing in (4.1) by minimizing
the corresponding training sample estimate of the generalized error

min
{am}M

1

n∑
i=1

νiL

(
yi, g−1

(
M∑

m=1
T (xi; am)

))
(4.2)

is in general infeasible. It requires computationally intensive numerical optimization tech-
niques. One way to overcome this problem is to approximate the solution to (4.2) by using a
greedy forward stagewise approach, also called boosting. This consists in sequentially fitting
a single function and adding it to the expansion of prior fitted terms. Each fitted term is
not readjusted as new terms are added into the expansion, contrarily to a stepwise approach
where previous terms are each time readjusted when a new one is added.

To prevent overfitting, cross validation is used to stop the boosting algorithm when its
prediction capabilities start to deteriorate. Early stopping plays a central role to ensure a
sparse model with optimal performances on new data. The optimal stopping iteration is
the one which leads to the smallest average empirical loss on an out-of-sample test data or
as measured by cross validation. The latter technique consists in randomly splitting the
training data set into several parts (or folds). Each part is then held out of the analysis and
the model is fitted on the remaining data to predict the observed values of the response in
the part set aside. Cross validation is a convenient way to balance goodness of fit and model
complexity: a model too close to the training set will often be worse for predictions, as it
reproduces noise in the data (or over-fits the training data).

This leads to the following algorithm:

1. Initialization :
Initialize ŝcore0(x) to be a constant by

ŝcore0(x) = argmin
s

n∑
i=1

νiL(yi, g−1(s)).

2. Main procedure :

4

For m = 1 to M do
a) Compute âm by solving the subproblem

âm = argmin
am

n∑
i=1

νiL
(
yi, g−1

(
ŝcorem−1(xi) + T (xi; am)

))
. (4.3)

b) Update ŝcorem(x) = ŝcorem−1(x) + βT (x; âm)
for some specified shrinkage coefficient β.

End for

3. Output:

π̂boost
D (x) = g−1

(
ŝcorem⋆(x)

)
where m⋆ is the optimal iteration selected by cross validation.

Boosting is thus an iterative method based on the idea that combining many simple functions
should result in a powerful one. In a boosting context, the simple functions T (x; am) are
called weak learners or base learners.

4.2 Binary regression trees as base learners
In this paper, we use binary regression trees as base learners. This is the case in the majority
of applications of boosting to insurance. Trees only use binary features I[Xj < t] for ordered
features Xj, with arbitrary threshold t or I[Xj ∈ S] for unordered categorical feature Xj

with S an arbitrary subset of the levels. Precisely,

• for a quantitative feature Xj, candidate splits t1, t2, . . . , tmj
, with t1 < t2 < . . . < tmj

are considered. Thresholds tk are half-way between consecutive values of xj in the
database. This leads to binary features Bjk = I[Xj < tk], k = 1, . . . , mj.

• for an ordered categorical feature Xj with levels ℓ1, ℓ2, . . . , ℓmj
ranked in ascending

order, lower levels are grouped to create

Bjk = I[Xj ∈ {ℓ1, . . . , ℓk}] for k = 1, . . . , mj − 1.

• for an unordered categorical feature Xj with levels ℓ1, ℓ2, . . . , ℓmj
, all strict subsets of

levels are considered to create

Bjk = I[Xj ∈ Sk] for every Sk ⊂ {ℓ1, . . . , ℓm}, Sk ̸= ∅.

Considering all non-empty subsets Sk ⊂ {ℓ1, . . . , ℓm} is effective for moderate m. For
larger m, some approximations are needed to keep computational time within reason-
able limits. Often, this amounts to considering the categorical feature as an ordered
one through the average response value in each level. Precisely, for an unordered
categorical feature Xj with a larger number m of levels, it is turned into an ordered
categorical feature Xj by ranking levels ℓ1, ℓ2, . . . , ℓmj

according to the mean value of
the response in each level.

5

Trees are built sequentially and not optimized globally. Precisely, trees are grown by
recursive partitioning. This means that trees recursively partition the feature space in hyper-
rectangles. The estimated mean response is then taken as the average response for all data
points falling in the hyper-rectangle under consideration. The analyst starts with a large
number of candidate binary features Bjk for splitting the data. The score obtained from the
preceding iteration is then combined with new candidates Bjk and the binary split causing
the largest drop in deviance is integrated in the score.

This produces base learners T (x; am) of the form

T (x; am) =
∑

t∈Tm

ctmI
[
x ∈ χ

(m)
t

]
, (4.4)

where
{
χ

(m)
t

}
t∈Tm

is the partition of the feature space χ induced by the regression tree
T (x; am) and {ctm}t∈Tm contains the corresponding predictions for the score in each terminal
node. For regression trees, am gathers the splitting variables and their split values as well
as the corresponding observed averages in the terminal nodes, that is,

am =
{
ctm, χ

(m)
t

}
t∈Tm

.

We refer the reader to Denuit et al. (2020) for a presentation of tree-based methods applied
to insurance.

4.3 Boosting with Tweedie loss function under log-link
The next result shows that when we work with the log-link function and a response that
belongs to the Tweedie class (and so with a loss function of the form (3.1)), solving (4.3)
amounts to build a single weak learner on the working training set

D(m) = {(r1,m, x1, ν1,m), (r2,m, x2, ν2,m), . . . , (rn,m, xn, νn,m)}

replacing the initial training set D in (2.1), where adapted weights and ratios are given by

νi,m = νi exp(ŝcorem−1(xi))2−ξ and ri,m = yi

exp(ŝcorem−1(xi))
.

We provide an alternative, elementary proof of this result, based on the closure of Tweedie
distributions under scaling.

Proposition 4.1 (Proposition 3.1 in Hainaut et al. (2022)). Consider the deviance loss
function (3.1). Then, (4.3) with the log-link function, that is

âm = argmin
am

n∑
i=1

νiL
(
yi, exp

(
ŝcorem−1(xi) + T (xi; am)

))
,

can be rewritten as

âm = argmin
am

n∑
i=1

νi,mL (ri,m, exp (T (xi; am))) . (4.5)

6

Proof. Recall that if Y obeys the Tweedie distribution with mean µ, power parameter ξ and
weight ν then for any positive constant c, cY is Tweedie with mean cµ, the same power
parameter and modified weight ν(c)ξ−2. See e.g. Property 2.5.1 in Denuit et al. (2019a)
for a proof. Since the essence of boosting consists in treating ŝcorem−1(xi) as a constant
to estimate am, this means that we can equivalently work with response ri,m obeying the
Tweedie distribution with adapted weight νi,m to perform that estimation. This is a direct
application of the result recalled earlier with c = 1/ exp(ŝcorem−1(xi)).

Boosting can thus be performed on the responses, proceeding in an iterative way, by di-
viding the response ri,m with exp(T (xi; am)) and multiplying νi,m with exp((2−ξ)T (xi; am))
at each step. Proposition 4.1 shows that gradient boosting introduces an extra step which is
unnecessary and leads to an approximation that can be easily avoided with boosting. This
extends the point made by Wüthrich and Buser (2019) for the Poisson distribution to the
whole Tweedie class.

This leads to the following algorithm:

1. Initialization :
Initialize ŝcore0(x) to be a constant by

ŝcore0(x) = argmin
s

n∑
i=1

νiL(yi, g−1(s)).

2. Main procedure :
For m = 1 to M do

a) Calculate weights

νi,m = νi exp
(
ŝcorem−1(xi)

)2−ξ

and ratios
ri,m = yi

exp(ŝcorem−1(xi))
.

b) Calculate

âm = argmin
a

n∑
i=1

νiL
(
yi, exp

(
ŝcorem−1(xi) + T (xi; a)

))
= argmin

a

n∑
i=1

νi,mL (ri,m, exp (T (xi; a))) .

c) Update ŝcorem(xi) = ŝcorem−1(xi) + T (xi; âm).
End for

3. Output:

π̂boost
D (x) = g−1

(
ŝcorem⋆(x)

)
where m⋆ is the optimal iteration selected by cross validation.

7

Updating the weights each time together with the responses appears to be very intuitive
for actuaries. Responses ri,m at iteration m corresponds to actual over expected ratios, or
AE ratios often used in insurance studies. Only the weights differ according to the Tweedie
distribution used to model responses. In the Poisson case, weights νi,m are estimated expected
responses at the preceding iteration m − 1. In the Gamma case, weights are left unchanged
and νi,m = νi at every iteration m.

4.4 Adaptive boosting
The idea behind ABT for Adaptive Boosting Trees is to fit cost-complexity pruned trees in
an adaptive way at each boosting step. In this approach, larger trees are fitted at earlier
stages and they progressively simplify until reducing to the single-node tree where the ABT
machine stops. The stopping criterion is thus built within the ABT algorithm and no
computationally-intensive cross validation step is needed. The cost-complexity measure is a
combination of the in-sample deviance and a penalty for the complexity of the tree under
interest. The latter is taken to be proportional to the number of terminal nodes (considering
that more terminal nodes result in a more flexible, and hence complex model). We refer the
reader to Huyghe et al. (2022) for an extensive presentation of this method.

5 Getting started with the BT package

5.1 Packages related to BT

The BT package implements the boosting approach reviewed in the preceding sections. Each
tree in the expansion is built thanks to the rpart package. See Therneau and Atkinson (2018)
for more information about this R package. The default tree.control parameter is set so
to grow the biggest tree possible. However, as in other boosting packages, it might happen
that some of the built trees do not reach the value of interaction.depth specified by users.
As we fully rely on rpart (we do not have full expansion control), in some specific cases we
emphasize that some of the grown trees might not be able to meet the above requirement
(i.e. the original rpart grown tree contains less than interaction.depth internal nodes).
Competitors to BT include gbm3, xgboost and lightgbm that are considered in the numerical
illustration performed in the next section.

5.2 Trees structure in BT

In the (adaptive) boosting tree R-package described in this section, each tree in the expansion
is built using the rpart R-package. The rpart wrapper is perfectly fitted for the adaptive
approach. Indeed, at each iteration, the adaptive boosting tree algorithm relies on the mini-
mal cost-complexity pruning procedure widely used within the rpart package and amongst
users.

Since (A)BT acts as a rpart wrapper, some tree building parameters are directly man-
aged by rpart. For instance, the size of the trees can be controlled within rpart by the
parameters maxdepth and minbucket. Recall that a regression tree with maxdepth=D has 2D

8

terminal nodes, each terminal node having D − 1 ancestors. Note that rpart does not allow
the user to specify the number of terminal nodes J nor the interaction depth ID of the tree.

In our package, the rpart parameters cp and xval are respectively forced to −∞ and
0, which means that the complexity parameter cp is left unspecified and that no cross-
validation is performed during the learning process. Notice however that these parameters
can be changed by the user if necessary.

Trees with interaction depth ID correspond to trees with J = ID + 1 terminal nodes such
that at most two terminal nodes have ID ancestors. Therefore, any tree with an interaction
depth ID can be seen as a subtree of a tree with maxdepth=ID. That is why, at each iteration,
a tree with maxdepth=ID is first built with rpart without any other constraints. In case
ID=1, the resulting tree corresponds to the selected interaction depth, so that the obtained
tree is returned without any other adjustments. Otherwise, when ID>1,

• Either the tree contains more than ID internal nodes. In that case, which is the most
likely one, the size of the tree must be reduced in order to get ID internal nodes.

• Or the tree contains less than ID internal nodes, which means that the biggest tree
that can be built is smaller than expected. In that case, the tree will be returned as
such, without any other adjustments.

In the first aforementioned case, a subtree thus still needs to be selected in order to get ID
internal nodes. The selection of this subtree with ID internal nodes is explained next, in
Section 5.3 for the boosting trees procedure and in Section 5.4 for the adaptive version of
the boosting trees procedure.

Notice that the tree originally developed is bigger than needed, increasing the computa-
tion time. However, it is worth to mention that the tree process is fully handled by external
well-developed (and well-known) package, leading to full transparency and easier handling.

5.3 Boosting trees
Thanks to rpart outputs, one can implement a greedy strategy starting from the root node
of the tree, as illustrated in Figure 5.1 for ID=3. The initial rpart object is thus a tree with
maxdepth=ID>1. The root node 0 is first split into two children nodes 1 and 2, so that the
subtree after one split has terminal nodes 1 and 2 and hence ID=1. Then, node 1 is in turn
split into two children nodes 3 and 4 and node 2 is split into nodes 5 and 6. Among those
two splits, we select the one that maximizes the decrease of the Poisson deviance, say node
2 as in Figure 5.1, so that the subtree after two splits has terminal nodes 1, 5 and 6 and
ID=2. Again, nodes 1, 5 and 6 are in turn split into children nodes 3 and 4 for node 1, 11
and 12 for node 5 and 13 and 14 for node 6. The third split is then selected among those
three splits as the one that maximizes the decrease of the Poisson deviance, say node 5 as in
Figure 5.1. The resulting tree has thus now an interaction depth ID=3 with internal nodes
0, 2 and 5. This process is continued until we get the selected ID. In the example of Figure
5.1, we stop the procedure here since we achieved the selected ID.

Notice that all this process is made possible thanks to the snip.rpart function in rpart.
From an initially built tree, this allows the user to create a subtree by specifying the branches
to be trimmed out. In addition, we emphasize that this function can also be interactively
used by clicking on particular nodes within the graphics window.

9

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Initial rpart object

Boosting Tree: Create tree from rpart output

0

1 2

First split

0

1

3 4

2

5 6

Second split

0

1

3 4

2

5

11 12

6

13 14

Third split

0

1 2

5

11 12

6

−→ Final tree

Figure 5.1: Illustration of the construction of the BT tree for ID=3 based on rpart output.
At each step, the splitting candidates are highlighted in green and the chosen strategy (best
improvement by splitting this node) is highlighted in red.

10

5.4 Adaptive boosting trees
The rpart outputs enable us to get the sequence of subtrees corresponding to the minimal
cost-complexity pruning procedure recalled in Huyghe et al. (2022) thanks to the cptable
object. Then, we select among these subtrees the largest one with at most ID internal nodes,
i.e. the largest subtree satisfying the inequality J ≤ ID + 1. Compared to boosting trees,
the obtained subtree can have this time less than ID internal nodes as explained in Huyghe
et al. (2022). Moreover, it is interesting to notice that even if the selected tree has exactly
ID internal nodes, it can be different from the one that would have been obtained with the
boosting trees algorithm. Indeed, while the boosting trees procedure uses a greedy strategy,
the adaptive boosting trees approach improves this greedy strategy by assessing the goodness
of the splits by also looking at those deeper in the tree.

5.5 Main arguments of BT

The user needs to define the following parameters:

formula: a symbolic description of the model to be fit, similar to what is required by other R
functions performing regression analyses. We emphasize that offsets are not supported
but that weights are used instead, in line with the approach presented in the preceding
section.

data: the database on which the computations will be performed.

tweedie.power: Tweedie power parameter for the response under consideration.

ABT: boolean value to define whether we fit a Boosting Tree (=FALSE) or an Adaptive
Boosting Tree (=TRUE).

n.iter: number of iterations.

train.fraction: percentage of the data used as training set. The remaining part will be
used as validation set.

interaction.depth: maximum number of splits in each tree.

shrinkage: acts as regularization for additional iterations - the smaller the shrinkage gen-
erally the better the performance of the fit. However, smaller shrinkage implies that
the number of trees may need to be increased to achieve a certain performance.

bag.fraction: fraction of the training observations randomly sub-sampled to fit a tree in
each iteration. This has the effect of reducing the variance of the boosted model.

colsample.bytree: number of variables randomly sampled that will be used to build the
next tree in the expansion.

cv.folds: number of cross-validation folds to create. If set to 1 (by default), no cross-
validation is performed.

11

n.cores: in case of cross-validation, the number of cores used to perform the parallelization.
Please note that in the cross-validation context, a call to the parLapply function is
made (whatever the number of cores). This parameter is originally set to cv.folds.

tree.control: the proposed algorithm is based on the rpart package. This parameter will
be used to originally build each tree in the expansion. We emphasize that if inter-
action.depth is set to NULL, each tree in the expansion will be built thanks to this
parameters with no further treatment. We recommend this parameter usage for ad-
vanced user only.

weights: a vector representing the weight given to each observation. By default, the same
weight (=1) is assigned to each observation.

seed: some of the parameters bring randomness during the algorithm. This parameter
allows the user to replicate the results.

We emphasize that performing cross-validation produces a first global model trained on the
full training set as well as different cv related BT models. The former is generally further
used while the latter helps to assess performances, for instance.

The BT_perf function allows the user to determine the best number of iterations that
has to be performed. This one also depends on the type of errors that are available/have
been computed during training phase. The training.error is automatically computed. In
case bagging is used, this corresponds to the in-bag errors (i.e. a random sub-selection of
the original training set). Also,

- If a train.fraction has properly been defined, a validation.error will be computed on
the validation set.

- If a bag.fraction has properly been defined, an oob.improvement vector will be com-
puted.

- If cross-validation parameters have been filled, a cv.error will be computed.

These values are stored in the BTErrors object.
The optimal number of iterations can be selected in a number of ways, by specifying

method which can be set to validation, OOB or cv depending on whether the user wants
to use validation.error, oob.improvement or cv.error as previously explained. We emphasize
that without specifying the method argument a best-guess approach will be performed. If
desired, the BT_perf function plots the computed errors alongside returning the optimal
iteration.

This sections only summarizes the main features of the package. An extensive presenta-
tion of the BT package can be found in Willame (2022).

6 Numerical illustration
Now that the BT package has been presented, let us perform a numerical illustration to assess
its performances on a typical insurance data set. After having presented the database, we

12

compare the results obtained with the help of the BT package to competitors gbm3, xgboost
and lightgbm. All these computations have been performed using R.

6.1 Descriptive statistics
The numerical illustration uses the freMTPLfreq database contained in the CASDatasets
package contributed by Dutang and Charpentier (2020). It comprises features collected for
413,169 motor third-party liability insurance policies together with the number of claims
reported to the insurer. This database has often been used to illustrate insurance pricing
methods.

The considered data set contains the following information:

PolicyID: The policy ID (used to link with the claims dataset).

ClaimNb: Number of claims during the exposure period.

Exposure: The period of exposure for a policy, in years.

Power: The power of the car (ordered categorical).

CarAge: The vehicle age, in years.

DriverAge: The driver age, in years (in France, people can drive a car at 18).

Brand: The car brand divided in the following groups:

- Renault Nissan or Citroen.
- Volkswagen, Audi, Skoda or Seat.
- Opel, General Motors or Ford.
- Fiat.
- Mercedes, Chrysler or BMW.
- Japanese (except Nissan) or Korean.
- Other.

Gas: The car gas, Diesel or Regular.

Region: The policy region in France (based on the 1970-2015 classification).

Density: The density of inhabitants (number of inhabitants per km2) in the city where the
policyholder lives.

The claim frequency defined as ClaimFreq = ClaimNb
Exposure has been computed and added to the

database. Before running the BT package, some records have been dropped: records with
an exposure larger than 1 year have been deleted, only drivers below the age of 90 are
considered, and only cars with vehicle age below 30 years are considered. Applying these
choices, we ended up with 411,305 records which represents 99.55% of the original number
of records.

13

The working database’s total exposure and claim number respectively amount to 230,319
years and 16,128 with a claim frequency of around 7%. Descriptive statistics are displayed in
Figure 6.1. Notice that the barplot represents the total exposure in the considered segment
and should be read on the left axis. The curve represents the claims frequency and its value
can be read on the right axis. Some observations can be drawn from these plots:

CarAge: As already mentioned, majority of cars have less than 30 years. The exposure above
20 years is quite limited. Regarding the claims frequency, it seems relatively stable up
to 12 years. A slight decrease can however be seen from this point on but should be
tempered by the low exposure observed above 20 years old.

DriverAge: Drivers are mainly aged between 30 and 55 years old. A clear trend is visible in the
claims frequency where younger drivers appear to be the most dangerous ones. This
observation can also be made for older drivers but has to be balanced by the low
exposure in that category.

Brand: Almost all the cars in the database are either Renault, Nissan or Citroen. This fact
can easily be explained as the database gathers information from French insurers. On
the claims frequency side, no specific effect is visible.

Power: As this variable is ordered categorical, one can interpret the categories higher than "k"
as the most powerful cars. We can observe that this specific segment is not the most
represented in the database. Moreover, the claims frequency tends to increase with the
car power.

Density: Largest exposures correspond to small density values, showing that a large part of the
database is coming from rural areas or small cities. One can also underline a clear
increasing trend in the claim frequency.

Region: Most of the policyholders are coming from the “Centre" region, the most populated
area in France. It is followed by the “Ile de France" and “Bretagne" ones. The largest
claims frequency is observed for the “Ile de France" region, corresponding to Paris area.

Gas: The database is well balanced between Diesel and Regular car gas. A slightly better
claim frequency can be noted for the Regular car gas.

Now that the database has been thoroughly presented, let us continue with model fitting.
To this end, we split the database in three parts:

- a full training set which contains 80% of the randomly sampled records, further split
into:

- a training set containing the 80% first full training set’s records.
- a validation set containing the 20% last records.

- a testing set which contains the remaining 20% records.

The testing set is reserved to model comparison. The claims frequency observed in these 3
sets are respectively of 6.99%, 7.11% and 6.97%.

14

(a) CarAge (b) DriverAge (c) Brand

(d) Power (e) Density (f) Region

(g) Gas

Figure 6.1: Univariate descriptive analysis

15

6.2 Comparison
We now aim to compare the performances of competitor models, namely BT with and without
adaptive approach, gbm3, xgboost and lightgbm. To this end, a grid search has been applied
for each competitor model. A set of possible parameters combination (so-called grid precisely
defined below) has therefore been created. In each case, every competitor model has been
fitted and its performances have been assessed using either validation set or cross-validation
approach. Moreover, the test set performances have also been computed for each fitted model
using the optimal number of iterations obtained with the two approaches. Notice that the
same predefined grid has been used for all competitors. In other words, we looked for the
best models inside this grid of parameters only; all the other models’ specific parameters
were therefore left to their default values. We acknowledge that allowing for a deeper and/or
competitor specific grid of parameters might have led to better models and to different
models comparison’s conclusion. The following grid of parameters has been used for the
present application:

- The interaction depth varies between 1 and 7. When possible, this parameter has been
interpreted as in BT package, that is the number of non-terminal nodes. In particular,

- the lightgbm package does not have such parameter but we rather used the
number of terminal leaves.

- in the same way, the xgboost package had to be tweaked to match with other
approaches. We therefore used the approx method to build the tree along with
the maximum leaves parameter.

- A bagging fraction of 50% has been applied with a bagging frequency of 1.

- A shrinkage of 1% has been used across all models.

- The minimal number of observations in a node has been set to 2.

- When cross-validation was performed, 3 folds were used.

- For all fitted model, 5,000 boosting iterations have been performed.

For each competitor, 7 combinations of parameters have been tried out and multiple perfor-
mances have been assessed. As one can notice, these possibilities only differ in the interaction
depth parameter. In the following, we refer to “run x" to mean that the parameters set cor-
responds to the interaction depth x. In particular, the 4th BT fitted model can be reproduced
thanks to the following pseudo code (its Adaptive Boosting counterpart is easily obtained
by setting ABT=TRUE):

BT(
formula = as.formula("ClaimFreq ~

Power + CarAge + DriverAge + Brand + Gas + Region + Density"
),
data = full training set,
tweedie.power = 1,

16

ABT = FALSE,
weights = Exposure,
keep.data = FALSE,
cv.folds = 3,
train.fraction = 0.8,
n.iter = 5000,
interaction.depth = 4,
shrinkage = 0.01,
bag.fraction = 0.5

)

Before diving into the results, the following technical aspects have to be stressed:

- As already mentioned, the BT package does not support offset. However, in our spe-
cific framework considering offset is equivalent to normalizing the response variable by
the corresponding weight value. Thus, it corresponds to working with ClaimFreq as
response variable and weights equal to Exposure. This approach has also be retained
for xgboost as well as lightgbm. In the gbm3 case, usual offsetting has been applied.

- For this example, the idea was to compute validation set performances as well as cross-
validation ones. We however emphasize that the former is not needed once the latter is
used. Moreover, it reduces the training set size to 64% of the working database rather
than 80% (i.e. no split of the full training set). That being said, the size of the training
set is deemed acceptable to provide meaningful results.
Depending on the package, either the full training set with a training fraction of 80%
(meaning that the first 80% records are used as train set and the remaining as validation
set) or the previously defined sets have been used. In any case, every model fitting was
performed so that the underlying sets remain similar.

- As described in the previous section, Adaptive Boosting does not necessarily need to
perform cross-validation. This conclusion is rather interesting to limit the computa-
tional cost. To keep everything comparable, the single-root convergence has not been
used as stopping criterion but we applied the same cross-validation process for all the
competing models.

- We emphasize that the xgboost package required one-hot encoding for categorical
variables. This approach has also been tested for the lightgbm package. In the latter
case, the retained option was however to use sparse matrix and point out the categorical
variables to the algorithm.

- Model performances were assessed thanks to Poisson deviance. Nonetheless, the Pois-
son loss function used across the different competitor packages are not fully identical.
For example, it often uses the negative Poisson log-likelihood. To make graphs com-
parable, we therefore needed to re-scale the furnished outputs to obtain the Poisson
deviance 1. We also mention that the represented total set deviance is obtained as the

1In the lightgbm and xgboost cross-validation plots, it corresponds to a small proxy which supposes
that the total exposure within each fold is equal.

17

(a) BT (b) ABT (c) gbm3

(d) xgboost (e) lightgbm

Figure 6.2: Validation set deviance

sum of the individual deviances divided by the number of records within the considered
set.

On Figure 6.2 (resp. Figure 6.3) the validation set errors (resp. cross-validation errors)
are shown for each competitor model across the 7 parameters combination. The vertical
dotted line represents the iteration which minimizes the error across all the 7 runs. For
clarity, the minimal validation set and cross-validation errors are also summarized on Figure
6.4. As one can note, the performances shown by the Adaptive Boosting and classical
Boosting tend to outperform its competitors for the cross-validation assessment. The results
are obviously a bit more volatile using the validation errors.

Using the validation set (resp. cross-validation) criterion, the optimal number of itera-
tions is obtained for each fitted model. Thanks to this information, the test set predictions
as well as the total set deviance are computed for every model under consideration. These
deviances are displayed in Figure 6.5. This assessment tends to show that the Adaptive
Boosting is globally better generalizing than its boosting competitors. That being said, if
one solely sticks with the best models obtained via cross-validation i.e. 5th run for ABT, 7th run
for BT, 2nd run for xgboost, ... the lightgbm model is slightly better. Using the validation
criterion, the xgboost model seems a bit better. We finally note that the three competitors
generalization performances are basically almost equivalent. It furthermore demonstrates

18

(a) BT (b) ABT (c) gbm3

(d) xgboost (e) lightgbm

Figure 6.3: Cross-validation deviance

(a) Validation set (b) Cross-validation

Figure 6.4: Minimal deviance for each run

19

(a) Validation set (b) Cross-validation

Figure 6.5: Minimal test set deviance for each run

(a) All bands (b) Zoom on first five bands

Figure 6.6: Predictions’ histogram - Min. predicted value = 7.52 × 10−5, band length =
0.025 for the left graph (0.006 on the right graph)

the relevance of BT package for Poisson distributed response variable.
While deviance is one of the most used criteria, it might be interesting to look at other

performance measures. For clarity purpose, only the test set predictions obtained with the
optimal number of iterations in the cross-validation case are considered. Sometimes, only
the results for the best run are displayed to avoid to multiply results.

The left-hand side of Figure 6.6 displays histograms for predictions according to each
best model. Please note that the twenty bins have been obtained by uniformly dividing the
intervals containing all the predictions. As the predictions’ are concentrated on the lower
tail, a zoom on the first five bins is performed on the right-hand side of Figure 6.6 where
these five initial bins are divided into twenty equidistant bins. It clearly seems that the
predictions’ distributions are similar for all models.

Following Tevet (2013), simple lift charts are represented in Figure 6.7. These plots are
easily obtained via the following process:

1. Compute the model predictions on the test set.

20

(a) BT (b) ABT (c) gbm3

(d) xgboost (e) lightgbm

Figure 6.7: Simple lift chart for best CV-runs

2. Sort the test set according to the obtained predictions (from lowest to highest).

3. Split the ranked observations into 10 buckets so that each band has the same exposure.

4. For each bucket, compute the average of observed ClaimNb and average of predicted
values.

The results are globally similar. The models over-estimate the highest frequencies and under-
estimate the lowest ones, with a breaking point around the 4th decile. Notice that this may
suggest the need for an additional auto-calibration step. We refer the interested reader to
Ciatto et al. (2022).

The Concentration Curve and the Lorenz Curve have also been investigated. More pre-
cisely, we focused on two resulting metrics, namely the Area Between the Curves (ABC)
and the Integrated Concentration Curve (ICC). The former is defined as the area between
the two performance curves while the latter is defined as the area under the concentration
curve. According to Denuit et al. (2019b), the Lorenz Curve at a given level α represents
the share of predicted claims corresponding to the α% of policies from the portfolio with
the lowest predicted values. The Concentration Curve at this level gives the corresponding
share of the true claims that should have been predicted from this sub-portfolio. The ABC
and ICC metrics can therefore be interpreted as follows:

21

(a) ICC/ABC (b) Kendall Tau’s

Figure 6.8: Rank performances

- A large difference between the two curves suggests that the considered predictor poorly
approximates the observation. We therefore want to minimize the ABC metric which
is the area contained between the Concentration Curve and the Lorenz Curve.

- The more convex the Concentration Curve, the better. In fact, a convex curve will
result in a better classification (lower risk will be less charged compared to higher
ones). Due to its properties this is equivalent to minimize the ICC.

One can observe on Figure 6.8 that there is no model jointly minimizing the two metrics. In
fact, the BT package appears to be better in terms of ICC while gbm3 has a lower ABC. If we
ignore the latter package which previously showed the worst performances, the BT models
along with lightgbm tend to be a good trade-off. In particular, the third Adaptive Boosting
run appears to be an appropriate candidate. Kendall’s rank correlation coefficients have also
been computed. This well-known metric allows the user to measure the concordance be-
tween observations and predictions. Obviously, this assessment is closely related to previous
metrics. The results are displayed on the right-hand side of Figure 6.8. This computation
seems to heavily favor the BT approach.

We finally end up this comparison by discussing the so-called variable importance. To
that end, the one-hot encoded importance have been summed up for the xgboost package.
The results are displayed in Table 6.2. Importances are globally similar across the different
competitors. Moreover, it clearly seems that the Density and the DriverAge are way more
important compared to the other ones. This observation is aligned with the descriptive
analysis where clear trends were observed for these features. One can also underline the fact
that these two variables are continuous and that the tree-based approach typically favors
such features.

7 Discussion
As shown in the numerical illustration, the performances obtained with the help of the BT
package are among the most powerful ones for all considered metrics. Of course, these

22

Variable BT ABT gbm3 xgboost lightgbm

Brand 6 7 6 6 7
CarAge 8 8 5 9 9
Density 25 24 22 28 25

DriverAge 41 39 39 41 40
Gas 4 4 3 4 4

Power 11 12 14 8 10
Region 6 7 11 4 5

Table 6.1: Variable importance (in %).

findings relate to a specific database and different results could be obtained with other
ones. Also, creating different testing set and/or using other seeds across runs might have
led to different ranking. We refer to Denuit et al. (2020) for a thorough explanation. We
acknowledge that the numerical illustration has been performed with a rather limited grid
of parameters and that the BT computational time was the longest one.

The BT package is still under development. In its current version, NA values are automat-
ically dropped from the input database. In the future, we could rely on the NA treatment
given by the rpart package which is based on surrogate variables. Finally, the convergence
to a root node seems to be the natural stopping criterion for the Adaptive Boosting and this
approach still has be implemented.

References
- Ciatto, N., Denuit, M., Trufin, J., Verelst, H. (2022). Does autocalibration improve

goodness of lift ? European Actuarial Journal.

- Delong, L., Lindholm, M., Wüthrich, M. V. (2021). Making Tweedie’s compound
Poisson model more accessible. European Actuarial Journal 11, 185-226.

- Denuit, M., Hainaut, D., Trufin, J. (2019a). Effective Statistical Learning Methods for
Actuaries I: GLM and Extensions. Springer Actuarial Lecture Notes Series.

- Denuit, M., Hainaut, D., Trufin, J. (2020). Effective Statistical Learning Methods for
Actuaries II: Tree-based Methods and Extensions. Springer Actuarial Lecture Notes
Series.

- Denuit, M., Sznajder, D., Trufin, J. (2019b). Model selection based on Lorenz and
concentration curves, gini indices and convex order. Insurance: Mathematics and
Economics, 89:128-139.

- Dutang, C., Charpentier, A. (2020). Package CASDatasets.

- Hainaut, D., Trufin, J., Denuit, M. (2022). Response versus gradient boosting trees,
GLMs and neural networks under Tweedie loss and log-link. Scandinavian Actuarial
Journal 2022, 841-866.

23

- Huyghe, J., Trufin, J., Denuit, M. (2022). Boosting cost-complexity pruned trees on
Tweedie responses: The ABT machine for insurance ratemaking.

- Lee, S.C., Lin, S. (2018). Delta boosting machine with application to general insurance.
North American Actuarial Journal 22, 405-425.

- Therneau, T. M., Atkinson, B. (2018). rpart: Recursive partitioning and regression
trees. https://cran.r-project.org/package=rpart.

- Tevert, D (2013). Exploring model lift: Is your model worth implementing. Actuarial
Review 40, 10-13.

- Willame, G. (2022). BT: (Adaptive) Boosting Trees Algorithm.
https://cran.r-project.org/package=BT and https://github.com/GiregWillame/BT.

- Wüthrich, M. V., Buser, C. (2019). Data Analytics for Non-Life Insurance Pricing.
Lecture notes available at SSRN http://dx.doi.org/10.2139/ssrn.2870308.

24

People drive actuarial innovation

www.detralytics.com - info@detralytics.eu

	Introduction and motivation
	Insurance pricing
	Tweedie loss functions
	Boosting trees
	Forward stagewise additive modeling
	Binary regression trees as base learners
	Boosting with Tweedie loss function under log-link
	Adaptive boosting

	Getting started with the BT package
	Packages related to BT
	Trees structure in BT
	Boosting trees
	Adaptive boosting trees
	Main arguments of BT

	Numerical illustration
	Descriptive statistics
	Comparison

	Discussion

