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ABSTRACT

The k-means algorithm and its variants are popular techniques of clustering. Their purpose is
to uncover group structures in a dataset. In actuarial applications, these methods detect clusters
of policies with similar features and allow to draw a map of dominant risks. This working note
starts with a review of the k-means algorithm and develops next two extensions to manage
categorical features. We develop a mini-batch version that keeps computation time under
control when analysing a high-dimensional dataset. We next introduce the fuzzy k-means in
which policies can belong to multiple clusters. Finally, we conclude by a detailed introduction
to spectral clustering.

Keywords: Clustering analysis, unsupervised learning, k-means, spectral clustering.
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1 Introduction

Cluster analysis is part of popular techniques within statistical data analysis and machine
learning, helping to uncover group structures in data. Objects are grouped in such a
way that the created groups (‘clusters’) are as much as possible heterogeneous between
each-others, while being homogeneous regarding observations classified within them. In
actuarial applications, clustering methods can detect dominant sub-populations of policies
and the analysis of their claims allows a posteriori to draw a map of insured risks.

The starting point of our work is the k-means algorithm (see e.g. Mac Queen 1967,
Kaufman and Rousseeuw 2009 or Hastie et al. 2009) that is one of the most popular
unsupervised learning algorithms. This is a partitional method that segregates observa-
tions into an upfront specified number of clusters optimizing a measure of similarity. There
exist multiple extensions of the k-means algorithm and we refer to Jain (2010) for a com-
plete survey.

Despite its popularity in other fields such as image processing, clustering techniques are
still under-exploited in actuarial science and the literature is scarce. Nevertheless, we can
quote Williams and Huang (1997) who use k-means clustering to identify high claiming
policyholders in a portfolio of motor vehicle insurances. Hainaut (2019) compares the k-
means and self-organizing maps (SOM) to discriminate policies of motorcycle insurances.
Hsu, Auvil et al. (1999) presents SOM in a framework which performs change of represen-
tation in knowledge discovery problems using insurance policy data.

The main reason explaining the under exploration of clustering techniques in actuarial
science is that partitional methods exclusively manage quantitative variables in their clas-
sical version. In this case, algorithms rely on the Euclidian distance between data points to
measure their similarity. Some extensions of these algorithms, aiming to take qualitative
variables into account, already exist. For instance, Huang (1998) extended the k-means
algorithm to data mixing quantitative and categorical variables by considering distance as
a mixture of the Euclidean distance between quantitative features and a measure of dis-
similarity between categorical features of two observations (Hamming’s distance). Hainaut
(2019) proposes as alternative a distance based on the analysis of joint frequencies (Burt’s
distance) of categorical variables.

The objectives of this working note are multiple. We first aim to adapt the k-means
algorithm to actuarial applications. For this purpose, we study two extensions managing
mixed numerical and categorical variables based on hybrid Euclidian and Hamming’s or
Burt’s distances. We next propose a mini-batch version to perform clustering on large
datasets with a limited loss of accuracy. We test the efficiency of the fuzzy k-means, a
method in which policies can belong to multiple clusters. We end this work by a review of
spectral clustering. As the k-means algorithm relies on the Euclidean distance, it fails to
identify non-convex clusters in the space of variables. Spectral clustering exploits a deeper



data geometry based on a graphical representation of datasets. For instance, the interest
reader may refer for details to Shi and Malik (2000), Ng et al. (2002) and Belkin & Niyogi
(2002). We apply it to a full categorical dataset with the Burt’s distance and develop a
solution to manage graphs of large datasets.

2 The k-means algorithm

Let us consider a set of n numeric objects X = {x1,...x,} where x; € RP and an integer
number k£ < n, the k-means algorithm searches for a partition of X into k clusters that
minimises the within groups sum of squared errors (WGSS) or intraclass inertia. The
k-means algorithm is based on the concept of centroids that may be interpreted as the
center of gravity of a cluster of objects. The coordinates of the u'" centroid is contained
in a vector ¢, = (cf,...,¢cy) for u =1,..,k. For a given distance d(.,.) and a set of k
centroids, we define the clusters or classes of data S, for u =1, ..., k as follows:

Su=A{zi : dlzi,cy) < d(xi,c5) Vie{l,.. . k}} u=1,.. k. (1)
Here,
. 2
d@ien) =) (wig = ¢f)"
j=1

is the Euclidian distance (other distances are considered in the following sections). The
center of gravity of S, is a p vector g,, = (g%, e ,g}g‘) such that

Figure 1: Illustration of the partition of a dataset with the k-means algorithm.



The center of gravity of the full dataset is denoted by g = %2?21 x;. We define the

global inertia by
1o 2
= - d 9 )
- ; (i, 9)

and the inertia I, of a cluster S, by

-5

wieSu

d(xziig,)> u=1,.. k
The interclass inertia I, is the inertia of the cloud of centers of gravity:

k
|Sul
ZT gu7 27

whereas the intraclass inertia I, is the sum of clusters inertiae, weighted by their size:

k
I, =

“1: ‘
— *Z Z mzagu
u=1x;€S

According to the Konig-Huyghens theorem, the total inertia is the sum of the intraclass and
interclass inertiae: Ix = I.+ I,. An usual criterion of classification consists to seek for a
partition of X minimizing the intraclass inertia I, in order to have homogeneous clusters on
average. This is equivalent to determine the partition maximizing the interclass inertia, I..



Algorithm 1 Algorithm for k-means clustering.
Initialization:
Randomly set up initial positions of centroids ¢;(0),...,cx(0).
Main procedure:
For e = 0 to maximum epoch, e;,4
Assignment step:
Fori=1ton
1) Assign «; to a cluster Sy(e) where v € {1,...,k}

Sule) ={x; : d(x;, cu(e)) < d(xi, ci(e)) Vi e {1,...,k}}.

End loop on data set, 1.
Update step:
For u=1tok
2) Calculate the new centroids ¢, (e + 1) of S,(e) as follows

1
U 1) = -
cule+1) 1Sa(e)] m'ezs:(e):n

End loop on centroids, .
3) Calculation of the total distance d***® between observations and closest
centroids:

k
A =3 N d(wi,cu(e + 1))
u=lg;eS5,(e)

End loop on epochs e

Finding the partition that minimizes the intraclass inertia is computationally difficult
(NP-hard). However, there exist efficient heuristic procedures converging quickly to a lo-
cal optimum. The most common method uses an iterative refinement technique called
the k-means which is detailed in Algorithm 1. Given an initial set of & random centroids
c1(0),...,¢c,(0), we construct a partition {S1(0),...,Sk(0)} of the dataset according to the
rule in equation (1). This partition is a set of convex polyhedrons delimited by median
hyperplans of centroids as illustrated in Figure 1. Next, we replace the k random centroids
by the k centers of gravity (cu(1)),_;.x = (94(0)),_;.; of these classes and we iterate till
convergence. At each iteration, we can prove that the intraclass inertia is reduced. Nev-
ertheless, we do not have any warranty that the partition found by this way is a global
solution.

The k-means algorithm proceeds by alternating between two steps. In the assignment
step of the e!” iteration, we associate each observation x; to a cluster S, (e) whose centroid
cy(e) has the least distance, d(x;, c,(€e)). This is intuitively the nearest centroid to each



observation. In the update step, we calculate the new means g,(e) to be the centroids
cu(e+1) of observations in new clusters'. The algorithm converges when the assignments
no longer change. There is no guarantee that a global optimum is found using this algo-
rithm. The k-means++ algorithm of Arthur and Vassilvitskii (2007) uses an heuristic to
find centroid seeds for k-means clustering. The procedure to initialize the k-means heuris-
tic is detailed in Algorithm 2. It improves the running time of the algorithm, and the
quality of the final solution.

Algorithm 2 Initialization of centroids for the k-means algorithm.

Initialization :
Select an observation uniformly at random from the data set, X. The chosen observation
is the first centroid, and is denoted ¢;(0).
Main procedure:
For j =2to k
Fori=1ton
1) Calculate the distance d(x;, c;—1(0)) from x; to ¢;j_1(0).
End loop on dataset, ¢

2) Select the next centroid, ¢;(0) at random from X with probability

d*(zi, ¢j-1(0))
>y (i, ¢j-1(0))

1=1,..,n.

End loop on k

To illustrate this section, we apply the k-means algorithm to data from the Swedish
insurance company Wasa in 1999. The data set is available on the companion website
of the book of Ohlsson and Johansson (2010) and contains information about motorcy-
cles insurances over the period 1994-1998. Each policy is described by quantitative and
categorical variables. The quantitative variables are the insured’s age and the age of his
vehicle. The categorical variables are: the policyholder’s gender, the geographic zone and
the category of the vehicle. The category of the vehicle is based on the ratio power in
KW x100 / vehicle weight in kg + 75, rounded to the nearest integer. The database also
reports the number of claims, the total claim costs and the duration of the contract for
each policies. Table 1 summarizes the information provided by categorical variables.

LA variant of this algorithm consists to recompute immediately the new position of centroids after
assignment of each records of the dataset.



Rating factors Class Class description

Gender M Male (ma)
K Female (kvinnor)
Geographic area 1 Central and semi-central parts of

Sweden’s three largest cities

EV ratio 9-12
EV ratio 13-15
EV ratio 16-19
EV ratio 20-24
EV ratio 25-

2 Suburbs plus middle-sized cities

3 Lesser towns, except those in 5 or 7

4 small towns and countryside

) Northen towns

6 Northen countryside

7 Gotland (Sweden’s largest island)
Vehicle class 1 EV ratio -5

2 EV ratio 6-8

3

4

5

6

7

Table 1: Rating factors of motorcycle insurances. Source: Ohlsson and Johansson (2010).

The database counts n =62436 policies after removing contracts with a null duration.
In this section, we focus on two quantitative variables: the owner’s age and age of the
vehicle. Before running the Kohonen’s algorithm we normalize the variables (we center
them and divide by their standard deviation). Table 2 reports the coordinates of centroids
computed with the k-means algorithm applied to variables “Owner’s age” and “Vehicle
age”. The last column shows the claim frequency per cluster. A quick analysis reveals that
the riskiest category are young drivers of less than five years old vehicles. If we use this
claim frequency as predictor, noted Xi, we can estimate the goodness of fit of this partition
with the Poisson deviance. The deviance is the difference between log-likelihoods of the
saturated model and of the the partitioned model. If N; and v; are respectively the number
of claims and the duration (exposure) of the i*" contract, this deviance is defined as:

" Ui « \ivi
D*= 2) N; (ZM — <log — + 1) I{Nizl}> :
=1 NZ N’L

The Deviance, AIC and BIC (degrees of freedom set to 20) are reported in Table 3 whereas
Figure 2 displays the different clusters.




Centroids Owner’s Age Vehicle Age Frequency (%)

1 24 14 1.9326
2 26 4 4.3189
3 35 15 0.8366
4 41 27 0.3267
5 42 4 0.9894
6 47 46 0.1747
7 47 15 0.423
8 92 4 0.8792
9 60 17 0.2874
10 63 5 0.9963

Table 2: Coordinates of centroids and average claim frequencies for 10 clusters obtained
with the k-means
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Figure 2: Illustration of the partition of a dataset with the k-means algorithm.

Goodness of fit
Deviance 6098.82
AIC 7487.38
BIC 7668.24

Table 3: Statistics of goodness of fit obtained by partitioning the datasets in 10 clusters
with the k-means.

To conclude this section, we discuss the criterions for choosing the optimal number of
clusters. This choice is usually based on the marginal gain of intra-class inertia or the
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marginal reduction of deviance. Above a certain number of clusters, the marginal gain of
inertia/reduction of deviance is limited. This is illustrated in Figure 3 that presents inertia
and deviance for various level of segmentation of the Wasa portfolio, according to variables
“Owner’s age” and “Vehicle age”.

Intra—class inertia
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© 0 o o o
T

# of clusters

Deviance
6100 6300 6500
| Il Il Il |

# of clusters

Figure 3: Upper plot: evolution of the total intra-class inertia. Lower plot: evolution of
the Deviance.

3 K-means and categorical distances

As stated in the introduction, most of features of insurance policies are encoded as cat-
egorical variables. The Euclidian distance is not anymore adapted in this case. Before
defining two alternative metrics, we introduce the structure of data to which the algorithm
is applied. The number of insurance policies is still denoted by n. Each of these policies
is described by p numerical variables stored in a vector xj—1,., € RP and [ categorical
variables which have mj binary modalities for K = 1,...,]. By binary, we mean that the
modality j of the k*" variable is identified by an indicator variable equal to zero or one.
The total number of modalities is the sum of my: m = 2221 my. In further develop-
ments, we enumerate modalities from 1 to m. The information about the portfolio may be
summarized by a n x m matrix D = (d; j)i=1..n j=1..m. 1f the ith policy presents the j*
modality then d; ; = 1 and d; ; = 0 otherwise.
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For example, let us assume that a policy is exclusively described by the gender (M=male
or F=Female) of the policyholder and by a geographic area (U=urban, S=suburban or
C=countryside). The number of variables and modalities are respectively | = 2, m; = 2
and mg = 3. If the first and second policyholders are respectively a man living in a city
and a woman living in the countryside, the two first lines of the matrix D are presented
in table 4.

’ ‘ Gender Area

Policy M| F |U|S|C
1 110 (1]0|0
2 0O 1]0]0]1

Table 4: Example of a disjunctive table for £k = 2 variables with respectively m; = 2,
mo = 3 modalities.

The table D is called a disjunctive table. Instead of running the k-means with the
Euclidian distance, we will use two other metrics. The first one is the Hamming’s distance
that is a measure of dissimilarity between features. The second one is a measure based
on the weighted Burt matrix. Both measures are based on the disjunctive table of the
dataset.

3.1 Hamming’s distance

The Hamming’s distance between 2 policies is computed as follows:

k=1

where 1¢4,, 24, ,} 1s an indicator variable equal to one if d; # dj and zero otherwise.

If a contract has numerical and categorical features, the distance between the it* and j*
policies is

d(i,j) =llzi —zll, +8 (Z 1{di,k¢dj,k}> : (2)

k=1

where 3 € RT is a weight that tunes the relative importance of categorical variables with
respect to numerical ones. Such an approach was proposed in Huang (1998). With this
choice of metric, the second step of Algorithm 1 must be adapted. The new centroids
cule+1)={ci(e+1),c™(e+ 1)} of Sy(e) are defined by

e a p-vector, ch (e + 1), that is the center of gravity of numerical variables in a cluster

1
Sl 2

x; €Sy (e)

12



Centroids Owner’s age Vehicle age Gender Zone Class Frequency

1 28 7 M 4 6 2.9208
2 29 14 M 3 2 1.9577
3 29 11 M 2 5 2.8089
4 38 10 K 3 3 0.8507
5 45 41 M 4 1 0.2329
6 46 14 M 4 4 0.4485
7 49 7 M 3 3 0.9074
8 49 15 M 4 3 0.3017
9 02 13 M 4 5 0.5189
10 o4 8 M 2 1 1.4045

Table 5: Coordinates of centroids and average claim frequencies for 10 clusters with the
k-means algorithm and Hamming’s distance.

e a m-vector, c;'(e + 1), of binary modalities corresponding to dominant features ob-
served in the cluster S, (e).

Table 5 shows the result of this procedure applied to Wasa’s portfolio. In addition to
numerical variables “Owner’s age” and “Vehicle age”, we consider the categorical features:
gender, zone and class. The algorithm is run with a weight 8 = 1. At a first sight, consid-
ering categorical variables allows us to obtain a better picture of dominant profiles in each
cluster. Figure 4 shows the 10 clusters in the space Owner’s and vehicle ages. We see that
considering categorical variables leads to an overlap of clusters in this space. Nevertheless,
the deviance, in Table 6 is slightly less good than the one with only quantitative variables.
One can eventually consider to adjust § in order to minimize the deviance but we fail to
find a (8 reducing it significantly for the Wasa dataset. Notice that we have also tested this
algorithm on a dataset containing exclusively categorical variables. This dataset is built
by categorizing variables “Owner’s age” and “Vehicle age”. Clusters obtained by this way
have nevertheless a low discriminating power and the deviance is much higher than in the
mixed case. In fact, the Hamming’s distance is a simple measure of discordance that does
not make any differences between observations that are “far” from those that are “close”
to each others. This motivates us to consider another distance that is detailed in the next
subsection.

Goodness of fit
Deviance 6184.65
AIC 7633.22
BIC 8085.31

Table 6: Statistics of goodness of fit obtained by partitioning the datasets in 10 clusters
with the k-means algorithm and Hamming’s distance.
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Figure 4: Illustration of the partition of a dataset with the k-means algorithm and Ham-
ming’s distance.

3.2 Burt’s distance

The Hamming’s distance is a simple measure of discordance between observations. Then it
fails to discriminate observations that are “far” from those that are “close” to each others.
The Burt’s distance remedies to this issue and is based on the study of joint frequencies of
modalities. In order to study the dependence between the modalities, we need to calculate
the numbers n; ; of individuals sharing modalities 7 and j, for 4,5 = 1,...,m. The m x m
matrix B = (niyj)tj:l“_"m is a contingency table, called the Burt matrix containing this
information. The Burt matrix is directly related to the disjunctive table as follows:

B=D'D.

This symmetric matrix is composed of [ x [ blocks By, ; for k,j = 1,...,1. A block By, ; is
the contingency table that crosses the variables k£ and j. Table 7 shows the Burt matrix
for the matrix D presented in Table 4. By construction, the sum of elements of a block
By, ; is equal to the total number of policies, n. The sum of n; ; of the same row i is equal

to
n;. = E n@j = lnm .

7j=1,....m
The Burt matrix being symmetric, we directly infer that
ng= Y nij=Iln;;.

i=1,....m

Furthermore, blocks By, i, for k = 1, ..., 1 are diagonal matrix, whose diagonal entries are the
numbers of policies who respectively present the modalities 1, ..., my, for the k" variable.

14



In our example, we have that n11 + ng2 = n and n33 + na4 + ns55 = n. Here, ny 1 and
ng o count the total number of men and women in the portfolio. Whereas n3 3, n44 and
ns 5 counts the number of policyholders living respectively in a urban, sub-urban or rural

environment.
Gender Area
M \ F U \ S \ C
M|n 0 n n n
Gender 1,1 1,3 14 Nij
F| 0 mngo|neg nog nos
U |ng1 ng2|ngz 0 0
Area S 4.1 714,2 0 N44 0
C|ns1 ns2| O 0 ms55

Table 7: Burt matrix for the disjunctive Table 4.

In the same manner as Hainaut (2019), we define the chi-square distance between rows
i and 7’ of the Burt matrix as follows:

" n [n n
2 (e .t i,J i',j
i) = Y ( -
—n ;i \ N, ng .

Jj=1

2
) i,i' € {1,...,m}.

Intuitively, the distance between two modalities is measured by the sum of weighted gaps
between joint frequencies with respect to all modalities. Similarly, the chi-square distance
between columns j and 5’ of the Burt matrix is defined by

m 2
2/ n ng 4 g, .
= A R € {1,...m).
X (5,5 > o <n] nj> 4. e{1,..,m}

=1

As we prefer to evaluate distances with the Euclidian distance, the elements of the Burt

matrix n; ; are replaced by weighted values n}/‘; :
W P nZJ S N
ni; = ———— 4,j=1,.,m. (3)
ng,. N j

Given that n; = In;; and n_; = [n; j, we have that

Mg 45
nW = )

1,J
’ Ly/miiTg

ij=1,.,m. (4)
1 1
If C is the diagonal matrix C' = diag (nlf..nmﬁn) then the weighted Burt matrix is

denoted by BW:

BW:%CBC.

15



The distances between rows (i,4') and columns (j,j') of the Burt matrix become:

j=1
Ui 2
X2 (6,37 =D (nl = ni)
=1
A
: : o

7 BW
BE.’ X /, /(, 3

A\ 4

Figure 5: Illustration of the partition of a dataset with the k-means algorithm.

The k' modality corresponds then to the & line of BW, a vector in R™. The it"
contract with multiple modalities can then be identified by the center of gravity D; B Wl
, of points with coordinates stored in the corresponding lines of the weighted Burt matrix.
This point is illustrated in Figure 5 in the case of three modalities. If each policy is defined
by a subset of I =2 modalities, we represent in R? as the mid point between corresponding
lines of BW. The mixed Euclidian and Burt’s distance between the i and j% policies is
then

d(ij) =i —a;l, +8(Ds.BY/1=D;BY/I,, (5)

where 8 € R* is a weight. The second step of Algorithm 1 must be adapted. The new
centroids ¢, (e + 1) = {ch(e + 1), (e + 1)} of Sy(e) are defined by

e a p-vector, ch (e + 1), that is the center of gravity of numerical variables in a cluster

e +1) =

16



e a m-vector, c)/'(e + 1), that is the categorical counterpart:

1
m 1) = D; BY /.

At the end of the procedure, we identify the dominant modalities in each clusters as the
most frequent ones. We run this algorithm with a parameter g = 10. This value is chosen
because it leads to the lowest deviance. Table 7 provides the results with 10 centroids.
The youngest male drivers of a recent motorbike are still identified as the riskiest category
of insureds. The male drivers that are 45 years old and driving ancestor motorcycles have
the lowest claim frequency. The deviance, reported in Table 9 is slightly better than the
one of a segmentation based only on owner’s and vehicle ages. Figure 4 shows the 10
clusters in the space Owner’s and vehicle ages. As for the Hamming’s distance, we see that
considering categorical variables leads to an overlap of clusters in this space.

Centroids Owner’s age Vehicle age Gender Zone Class Frequency (%)

1 26 5 M 4 3 4.2638
2 28 15 M 2 5 1.9384
3 31 16 M 4 5 0.7463
4 45 43 M 4 1 0.2541
) 46 4 M 4 3 0.8951
6 46 10 K 4 3 0.682
7 49 16 M 2 3 0.5918
8 20 16 M 3 3 0.3894
9 52 17 M 4 3 0.2917
10 62 6 M 4 3 0.757

Table 8: k-means algorithm and Burt’s distance. Average owner’s and vehicle ages, domi-
nant features and average claim frequencies per cluster.

Goodness of fit
Deviance 6082.60
AIC 7751.17
BIC 9197.87

Table 9: Statistics of goodness of fit obtained by partitioning the datasets in 10 clusters
with the k-means algorithm and Burt’s distance.

17
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Figure 6: Illustration of the partition of a dataset with the k-means algorithm with Burt’s
distance.

To conclude this section we apply the k-means to the Wasa insurance dataset fully
converted into categorical variables. The distance in this case is homogeneous and exclu-
sively evaluated with the weighted Burt’s table. For this purpose, we convert the variables
“driver’s age” and “vehicle age” into categorical variables with 6 modalities. Categories are
designed with the k-means algorithm. Next we compute the matrix of x; = Diy,BW /1 for
i =1 to n and apply the standard k-means algorithm. Table 10 reports the mean driver’s
and vehicle ages, the most frequent features and the claim frequency in each cluster. This
allows to quickly detect the most and the less risky driver’s profiles. The deviance (Table
9) is comparable to the one obtained with other approaches. In comparison, the deviance
of a GLM model fitted to the same dataset is around 5790 whereas the deviance of the
null model is equal to 6648. Notice that the AIC and BIC are computed with a number
of degrees of freedom equal to 20x28 (# of clusters x # of modalities). At a first sight,
the AIC in Table 9 seems less good that the one of previous models. This would be true if
datasets were the same. The increase of AIC is here mechanically linked to the conversion
to categorical variables.
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Owner’s age Vehicle age Gender Zone Class Frequency (%)

24 7 M 3 3 5.56
32 10 M 1 3 2.7
36 11 K 4 3 1.38
39 9 K 4 3 0.98
39 16 K 3 3 0.35
41 11 M 4 6 1.58
41 16 K 4 3 0.47
42 2 K 4 3 1.23
42 12 M 4 4 0.61
43 ) M 2 3 0.98
43 13 K 4 3 0.92
43 17 M 3 3 0.43
44 12 M 4 3 0.49
45 17 M 3 ) 0.66
45 17 M 4 3 0.3
47 47 M 4 1 0.2
48 22 M 4 1 0.33
o1 6 M 4 ) 0.72
52 4 M 4 3 0.92
99 10 M 2 3 1.03

Table 10: Average owner’s and vehicle ages, dominant features and average claim frequen-
cies per cluster. k-means applied to a full categorical dataset.

Goodness of fit
Deviance 6083.61
AIC 8552.18
BIC 13615.65

Table 11: Statistics of goodness of fit obtained by partitioning the full categorical dataset
in 20 clusters with the k-means.

4 Mini-batch k-means

For large datasets, the computation time of k-means increases because of its constraint of
needing the whole dataset in main memory. For this reason, several methods have been
proposed to reduce the temporal and spatial cost of the algorithm. A different approach
is the Mini batch k-means algorithm.
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Algorithm 3 Mini-batch k-means algorithm

Initialization:
Randomly set up initial positions of k£ centroids
Initialize clusters S1 = ....= S, =0

Main procedure:
For e = 0 to maximum epoch, €,,q.
Random sampling of the batch dataset M of size b
Initialize sample clusters S7¢" = ... = SP* =0
Assignment step:
Fori=1tob
1) Assign i'® policy to cluster S7* where

Sy =A{u : d(i,cule)) < d(i,ci(e)) V5 e{l,...k}}.

End loop on batch dataset, .
Update step:
Foru=1tok
2) Calculate the centroids of the batch assigned to S;¢*:

pnew _
Cu new| Z Lis

zeSnew
CT’new = new Z D BW/l
| | ZeSnew

3) Let ny(e) = Wﬁl% Centroids ch(e + 1) and (e + 1) of S, are:
cule+1) = (1 —nu(e)) cyle) +nule)ey™ ™,
e (e+1) = (1 —nu(e)) ey'(e) + nule)ey, ™.
End loop on centroids, wu.

End loop on epochs e
3) Calculation of the total distance d'°** between observations and closest centroids.

Mini Batch k-means algorithm‘s main idea is to use small random batches of data with
a fixed size, so they can be stored in memory. Each iteration a new random sample from
the dataset is obtained and used to update the clusters, taking care of deprecating previous
coordinates according to a learning speed. This operation is repeated until convergence.
The algorithm 3 presents the details of this approach for mixed numerical and categorical
variables combined with the Burt’s distance.

The empirical results in the literature suggest that it can obtain a substantial saving of
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Owner’s age Vehicle age Gender Zone Class Frequency

26 6 M 4 3 4.2518
28 10 K 4 3 1.2647
29 17 M 4 5 1.3413
45 6 M 4 4 0.9823
45 17 M 4 3 0.3726
45 43 M 4 1 0.2492
46 4 M 4 3 0.8167
46 14 K 4 3 0.6454
29 ) M 4 3 0.8883
99 17 M 4 3 0.2662

Table 12: Coordinates of centroids and average claim frequencies for 10 clusters, mini-
batch k-means.

computational time at the expense of some loss of cluster quality, but not extensive study
of the algorithm has been done to measure how the characteristics of the datasets, such as
the number of clusters or its size, affect the partition quality. As the number clusters and
the number of data increases, the relative saving in computational time also increases.

We run this algorithm with the Burt’s distance (5), a parameter § = 10 and batches
of 10 000 policies. We recall that § is chosen because it leads to the lowest deviance.
Table 12 provides the results with 10 centroids. We retrieve most of categories found in
Sub-section 3.2 except that we have now two categories with female drivers. The deviance,
reported in Table 13 is slightly better than the one of a segmentation based only on owner’s
and vehicle ages.

Notice that the AIC and BIC are computed with a number of degrees of freedom com-
puted as # of clusters x # of modalities. This explains why AIC and BIC mechanically
increase due to the categorization of numerical variables. Figure 7 shows the 10 clusters
in the space Owner’s and vehicle ages. In our case study, the gain of computation time
with respect to k-means is nevertheless limited (both algorithms run in a few seconds). To
observe significant gains of computation time, the mini-batch k-means should be tested on
a larger dataset than the one of Wasa.

Goodness of fit
Deviance 6077.27
AIC 7785.84
BIC 9413.38

Table 13: Statistics of goodness of fit obtained by partitioning the datasets in 10 clusters
with the mini-batch k-means.
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kmeans on numerical and categorical variables
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Figure 7: Illustration of the partition of a dataset with the mini-batch k-means algorithm
with Burt’s distance.

5 Fuzzy k-means

In non-fuzzy clustering (also known as hard clustering), data is divided into distinct clus-
ters, where each data point can only belong to exactly one cluster. In fuzzy clustering, data
points can potentially belong to multiple clusters. The algorithm minimizes intra-cluster
variance as well, but has the same problems as k-means; the minimum is a local minimum,
and the results depend on the initial choice of weights.

The fuzzy k-means algorithm attempts to partition a finite collection of n elements into
a collection of k fuzzy clusters, S, for u = 1, ..., k, with respect to some given criterion.
Given a finite set of data, the algorithm returns a list of k cluster centres {cy,...,ct} and a
partition matrix W of “membership” w; ; for i = 1,...,n and j = 1,..., k. The w; ; tells the
degree to which the i*" policy belongs to cluster S;. The fuzzy k-means aims to minimize
an objective function:

n k
arg min Z Z (w; ;)™ d(i, ¢j)
i=1 j=1

where
1

S, (deen) ™

The hyper-parameter m € RT with m > 1 is called the fuzzifier. The fuzzifier, m, deter-
mines the level of cluster fuzziness. A large m results in smaller membership values wj ; ,

1l)iyj. =
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and hence, fuzzier clusters. In the limit m = 1, the memberships, w; j, converge to 0 or 1,
which implies a crisp partitioning. The fuzzy k-means is detailed in algorithm 4.

Algorithm 4 Fuzzy clustering.
Initialization:
Randomly set up initial positions of centroids ¢;(0)....,cx(0).
Main procedure:
For e = 0 to maximum epoch, e;,4z
Assignment step:
Fori=1ton
1) Calculate the probability that the i policy is in cluster S;(e), j €

{1,...k}
1

Wy 5 = 2

b, ()™

End loop on data set, i.
Update step:
Foru=1tok
2) Update centroids ¢, (e + 1) = (cli(e + 1), ™ (e + 1)) of Sy(e):

D i1 Wiw(e)"x;
Z?:l wj (€)™
S wiu(e)™D; BW /I
D i1 Wiw(e)™

ee+1) =

e +1) =

End loop on centroids, u.
3) Calculation of the total distance do*e :

k n
dlotal — Z Z wiq(e)"d(i, cu(e+1)).

u=1 =1

End loop on epochs e
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Owner’s age Vehicle age Gender Zone Class Frequency (%)

23 10 M 4 6 2.86
26 6 M 4 3 5.25
31 10 M 2 4 2.22
35 10 M 2 6 2.98
38 10 K 4 6 1.3
40 10 K 2 3 0.93
40 15 K 4 ) 0.52
41 8 K 4 4 1.3
41 10 K 4 3 0.5
42 12 M 2 3 0.89
44 15 M 4 ) 0.52
45 13 M 4 4 0.46
45 16 M 4 3 0.32
45 16 M 3 3 0.53
46 8 M 1 3 1.99
47 11 M 4 3 0.44
48 33 M 4 1 0.42
49 10 M 4 5 0.76
49 10 M 2 3 0.67
o7 9 M 2 3 1.14

Table 14: Fuzzy clustering. Average owner’s and vehicle ages, dominant features and
average claim frequencies per cluster.

We apply the fuzzy k-means to the Wasa insurance dataset fully converted into cate-
gorical variables. We convert the variables “driver’s age” and “vehicle age” into categorical
variables with 6 modalities as in the Sub-section 3.2. We run the algorithm with a fuzziness
parameter equal to m = 1.10. Table 14 reports the mean driver’s and vehicule ages, the
most frequent features and the claim frequency in each cluster. The policies are assigned
to the most likely cluster (highest w; ; for j =1, ..., k). We find similar most and less risky
driver’s profile to those of Sub-section 3.2. The deviance (Table 15) is nevertheless less
good than with other approaches. Notice that if we set m = 2, which is a standard level of
fuzziness in the literature, several clusters are not assigned any policies but some policies
have well a non-null probability to belong to them.

Goodness of fit
Deviance 6 135.27
AIC 8 603.84
BIC 13 667.31

Table 15: Fuzzy clustering. Statistics of goodness of fit obtained by partitioning the full
categorical dataset in 20 clusters.
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6 Spectral clustering

As the k-means algorithm relies on the Euclidean distance, it does not perform well on non-
convex geometrical representation. To illustrate this, we apply the k-means to partition the
circular dataset plotted in the left plot of Figure 8 into 2 or 4 clusters. Clusters obtained
by this way are shown in the mid and right plots. The algorithm clearly fails to identify
the inner and outer rings.

dataset K-means, 2 clusters K-means, 4 clusters

Figure 8: Illustration of the partition of a non-convex dataset with the k-means algorithm.
Each cluster is identified by a colour.

One solution to cluster non-convex shape consists to exploit a deeper data geometry.
It is feasible through spectral clustering (Shi and Malik, 2000, Ng et al., 2002, Belkin &
Niyogi, 2002). It works by embedding the data in a different space derived from a graphical
representation of the dataset. Applying k-means on this representation allows identifying
non-convex clusters.

Spectral clustering uses the graph theory to represent the data points. As illustrated
in Figure 9, a graph G is defined by three elements: vertices v; representing data points,
edges e;; representing link between vertices v; and v; and weights w;;. These weights are
for instance the distance between two vertices linked by an edge.
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Figure 9: Vertices, edges and weights of a graph.

Mathematically, a graph G is defined as G = (V,E,W) with V, E and W being
respectively the set of all Vertices, Edges and Weights. If we denote v; +— v; when an
edge links v; to vj, the graph is represented by:

V ={vitiz
E ={e;j:v; «<—v;}
W = {(wij D Wiy 75 0 if Vi < Uj}

Elements E and W can be represented as n X n matrices where n is the number of data
points in the dataset. The elements e; ; of E are equal to 1 if v; <— v; and 0 otherwise.
The matrix W contains distance w;; if two vertices ¢ and j are linked by an edge.

In order to work with these representations, we use a kind Fourier transformation on
the graph G based on its Laplacian representation. The Laplacian representation of a
graph G is defined as:

L=D-W

where D being a diagonal matrix with diagonal elements that are D;; = Zj w; . D is
often referred as the degree matrix.

Why is matrix L called Laplacian? We can define a function on a graph, f : V — R
such that v; — f(v;). Let us consider a discrete periodic function which takes N values,
at times 1,2, ..., N. The loop on periods may be represented by a ring graph as shown in
Figure 10.

U2
U1
UN
Figure 10: Ring representation of a period with /N steps.
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The matrix of edges and weights is in this particular case

0 1 0 0 1
1 0 1 0 0

E—W— 01 0 1 O
. .10 1
1 0 ... 0 1

If we denote by f = (f(vj));—; _n the vector of values of f(.) at vertices, the product Lf
correspond precisely to the second finite difference derivative of the function f(.).

2 -1 0 0 -1
-1 2 -1 0 0
I— 0o -1 2 -1 0
-1 2 -1
-1 0 0o -1 2

We can next extract the eigenvalues and eigenvectors of the Laplacian (spectral analysis).
Since L is symmetric, we can rewrite Laplacian L as L = UXU " where U is a matrix
containing all the eigenvectors and ¥ a diagonal matrix containing the eigenvalues.

Analyzing eigenvalues extracted from a graph provides useful information about its struc-
ture. For instance, if all vertices of a graph are completely disconnected, all eigenvalues
are null. As we add edges, some of the eigenvalues becomes non-null. The number of
null eigenvalues corresponds to the number of groups of connected vertices in our graph.
As illustration, let us consider the graph plotted in Figure 11 that is made of K different
groups of vertices not connected between each others.

T

Figure 11: Graph with K sub-graphs.

In such a case, the number of eigenvalues equal to 0 is equal to the number of groups
K. If all the vertices are connected between each-others, we would only observe one group
and thus only one eigenvalue equals to 0. Moreover, the first nonzero eigenvalue, called the
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spectral gap, informs us about of the density of the graph. If a graph is densely connected
(all pairs of the nodes have an edge), then the spectral gap is equal to the number of vertices.

The second eigenvalue is called the Fiedler value, and the corresponding vector is the
Fiedler vector. The Fiedler value approximates the minimum graph cut needed to sepa-
rate the graph into two connected components. Let us imagine that in our example that
K = 2 and that the 2 groups of vertices are linked by one additional edge. For such case,
simply by looking at each value in the Fiedler vector, it would give us information about
which side of the cut (V; or V3) that vertice belongs.

Finally, if a graph is made of K sub-graphs, we can prove that elements of the K eigenvec-
tors with null eigenvalues are constant over each cluster, as illustrated in Figure 12. If the
K clusters are not identified, we can run the k-means algorithm with rows of the first K

eigenvectors as input representative of vertices. The full procedure is detailed in algorithm
5.

constant over each cluster

A P

14

\—__v.—/
K cigenvectors with 0 e.v.

N\

[~
'\\

2
I
[ — —
Y

Figure 12: Matrix of eigenvectors of a the Laplacian of a graph with K sub-graphs.

At this stage, we haven’t discussed yet how to represent an initial dataset as a graph.
The first step consists to associate vertices (vj)jzl...n to each data points. We next define
a measure of similarity that is inversely proportional to the distance between two data
points. This similarity is used to construct the graph. Two highly similar data points will
be connected by an edge with a weight equal to their similarity measure. At the opposite,
data points with a low similarity are considered as disconnected. A common measure of
similiarity is based on a Gaussian kernel:

S(i,j) = exp <—d(i’j)> ,

(07

where o € RT is a tuning parameter. There exist different ways of creating the pairwise
similarities graphs representation and this choice generally has an influence on the created
clusters.
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Algorithm 5 Spectral clustering.
Initialization:

Represent the dataset X as a graph G = (V, E, W)
Main procedure:

1) Calculation of the n x n Laplacian matrix

L=D-W

2) Compute the eigenvectors matrix U and diagonal matrix of eigenvalues ¥ of L,
such that
L=UsU"

3) Fix k and build the n x k matrix U®) of eigenvectors
with the k closest eigenvalues to zero

4) Run the k-means algorithm 1 with the dataset of Ui(f) fori=1,...,n.

5) The *" data point is associated to the cluster of Ui(f)

a. The e-neighborhood graph: we connect all the points for which the pairwise distances
are smaller than e. In practice, it means keeping all distances/similarities smaller
than e and forcing all the others to 0.

b. The k-nearest neighbor graph: we connect the vertex v; with the vertex v; if v; is
among the k-nearest neighbors of v;. However, the neighborhood relationship is not
symmetric and we need the graph to be symmetric. There exist two ways to force the
symmetry: the first one is simply to ignore the directions of the edges, meaning that
we connect v; and v; if v; is among the k-nearest neighbors of v; or if v; is among
the k-nearest neighbors of v;. The resulting graph is usually called the k-nearest
neighbors graph. The second way is to connect vertices v; and v; if both v; is among
the k-nearest neighbors of v; and v; is among the k-nearest neighbors of v;. The
resulting graph is usually called the mutual k-nearest neighbors graph.

c. The fully connected graph: we connect all the points available in the dataset.

As explained by Von Luxburg (2007), the spectral clustering outperforms other popular
clustering algorithms due to its ability to handle non-convex clusters. To illustrate this,
we apply this method to the circular dataset used in the introduction of this section (1200
points, 800 in an outer ring and 400 in the central circle). We build the graph with the
mutual k-nearest neighbors for k = 20. The similarity parameter is &« = 1. The left plot of
Figure 13 confirms that inner and outer rings are well identified by spectral clustering. The
right plot shows all the pairs of eigenvector coordinates (Uj 1, Ui’2)i:1,...,1200' We observe
that coordinates of points belonging to the same cluster are identical.
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Figure 13: Left plot: partition of a non-convex dataset with spectral clustering.
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Figure 14: Left plot: partition of a non-convex dataset with spectral clustering prelim-
inary reduced with the k-means algorithm. Right plot: pairs of eigenvector coordinates

(Ui,h Ui,g) for i =1 to n.
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In practice, implementing spectral clustering for large datasets is a challenging task
mainly because the sizes of edge and weight matrix (F, W) explode. We can eventually
code (E,W) as sparse matrix if few vertices are connected. An alternative consists to
reduce the size of the initial dataset with the k-means algorithm and to apply spectral
clustering to centroids. The efficiency of this method is illustrated in the right plot of
Figure 14. It displays the 100 centroids representative of the circular dataset of 1200
data points and their cluster. The right plot shows the pairs of eigenvector coordinates
(Ui,hUi,Q) for i =1 to 100.

To conclude this section we apply spectral clustering to the Wasa insurance dataset. In or-
der to work with homogeneous distance, we convert the variables “driver’s age” and “vehicle
age” into categorical variables with 6 modalities as in the second example of sub-section
3.2. Categories are designed with the k-means algorithm.

We use the Burt’s distance and compute the disjunctive table D and the weighted Burt
matrix denoted by BW. As in Section 3.2, the i** contract with multiple modalities is
identified by the center of gravity x; = DL.BW /U, of points with coordinates stored in
the corresponding lines of the weighted Burt matrix. The dataset counts 62 436 contracts
and we have to reduce its dimension in order to graphically represent the dataset. For
this reason, we apply the k-means algorithm with 1500 centroids. The graph is next built
with the method of mutual k-nearest neighbours (with k=20) and a similarity parameter
(a = 1) applied to centroids. We run the spectral clustering algorithm with & = 20 clus-
ters. Table 17 reports the average owner’s and vehicle ages, the dominant features and the
observed claim frequency for each cluster. We see that this method is able to discriminate
drivers with different risk profiles. Table 16 confirms that the method achieves a reasonable
goodness of fit in term of deviance. The AIC and BIC are computed with a number of
degrees of freedom equal to 20x20 (# of clusters x # of eigenvectors).

Goodness of fit
Deviance 6089.843
AIC 8238.413
BIC 11855.17

Table 16: Statistics of goodness of fit obtained by partitioning the datasets in 20 clusters
with the spectral algorithm.
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Owner’s age Vehicle age Gender Zone Class Frequency

25 4 M 1 4 7.54
25 10 M 4 6 3.2
26 9 K 2 4 1.65
38 16 K 3 5 0.41
41 10 K 4 3 0.51
41 10 K 1 4 0.62
42 9 K 1 3 0.91
42 16 M 3 ) 0.71
42 25 M 4 3 0.46
43 10 M 3 5 1.54
43 11 K 4 4 1.07
44 10 K 4 6 1.61
45 26 K 2 1 0.94
45 32 M 3 1 0.77
46 8 K 2 4 0.94
46 11 M 3 4 0.71
47 12 M 4 3 0.47
48 ) M 3 3 1.14
52 16 M 2 2 1.39
29 7 M 3 4 1.21

Table 17: Categories obtained with the spectral clustering algorithm.
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7 Conclusions

This working note explores the potential applications of popular clustering techniques to
insurance datasets. The main challenge consists to define a distance between two observa-
tions characterized by categorical and numerical variables. Two approaches are proposed.
The first one mixes the Euclidian and Hamming’s distances, that is a measure of similarity.
Our empirical experiment reveals that combining this hybrid distance with the k-means
allows identifying relevant clusters of policies. Nevertheless, the Hamming’s distances has
a low discriminating power mainly because it does not make difference between “far” and
“close” observations. As alternative, we consider a Burt’s distance based on the analysis of
joint frequencies. Numerical tests emphasize the robustness of this method both on hybrid
numerical-categorical and full categorical datasets.

We next presents two interesting variants of the k-means algorithm. The first one is
based on batches that allows to find clusters in large datasets. The other one is based on
fuzzy logic: an observation can belongs to multiple clusters. Our numerical experiment
reveals that the fuzzy k-means do not outperform its non-fuzzy version on our dataset.

The last part of this article is devoted to spectral clustering that is a powerful method
to detect non-convex clusters. Nevertheless, this approach requires a graphical represen-
tation that is particularly consuming in terms of computer resources when analyzing a
large dataset. We circumvent this drawback by a preliminary reduction of data using a
k-means procedure with a high number of centroids. Numerical tests carried on a full cat-
egorical database reveals that this approach is competitive in term of deviance compared
to methods based on standard k-means.
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