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ABSTRACT

In this work, we consider a simple way to model accumulation episodes (i.e., large number
of claims occurring in a short amount of time) in the context of cyber risk. This provides
a generic way to design stochastic scenarios measuring the impact of such an event on an
insurance portfolio. A particular attention is devoted to providing a way to model network
effects (contagion between actors connected with each other) while producing a model
needing relatively few data to be calibrated. Illustrations of this method are performed to
determine the impact of different behaviors of the policyholders and of the insurance
company on the spread of the cyber epidemic.

Keywords: Cyber insurance; accumulation scenarios; epidemiological models; multi-group
SIR models.

Short title: Accumulation scenarios in cyber insurance.




1 Introduction

Cyber-risk is the corollary of the dependence of the society to digital tools. With the
increase of cyber-attacks (see Lallie et al. (2021), the report from Agence Nationale de
la Sécurité des Systémes d’Information (2021)), the development of insurance products
appears as a promising solution to enhance the resilience of the economy. However, the
uncertainty linked to this new risk is important, see for example Eling and Loperfido
(2017) or Farkas et al. (2021). A major concern is the systemic nature of the risk (see
Welburn and Strong (2019)): due to the connectivity between the policyholders, a cyber
infection can spread fast and lead to many claims in a small amount of time. This en-
dangers the mutualization process, which is at the core of the insurance activity. This
paper aims at defining a standard framework to design stochastic scenarios of such accu-
mulation episodes. The aim is to understand how reactions of the actors can have impact
on the severity of such a massive attack, and how the shape of the network linking the
policyholders can impact the outcome.

The history of such massive contagious cyber events is relatively poor. However, Wan-
naCry (see Mohurle and Patil (2017)) and NotPetya (see Tourny (2017), Fayi (2018)), in
2017, have been warning signs that show that the financial impact of such events can
be huge. The threat of a "cyber-hurricane" (see Institut Montaigne (2018)) being im-
portant, designing scenarios is a way to dimension the response against such an event,
and to constitute the proper amount of reserve. If designing deterministic scenarios is
a proper way to prepare for identified vulnerabilities, stochastic scenarios are a way to
rapidly consider a large scope of situations. In this paper, we consider the general frame-
work of Hillairet and Lopez (2021) used to design contagion scenarios in cyber-risk at
a portfolio level. This approach is based on the separate modeling of the spread of the
infection among the national (or even global) population, of the time required to assist
an affected policyholder, and of the reaction (how fast people protect themselves against
the threat). We here mostly focus on the spread of the virus, with a particular attention
devoted to building a model which takes the potential links between policyholders (hence
the connectivity of the network they form). The importance of connectivity has been
considered for example in Fahrenwaldt et al. (2018), while the approach that we propose
is somehow rougher but easier to calibrate from data.

The paper is organized as follows, a first section summarizes the general framework

and the assumptions made on the portfolio. Then, the next section goes in the heart of



the model by exposing the assumptions and the way it works. Finally, the last section

illustrates this model on a portfolio, testing different scenarios before concluding.

2 General framework

In this section, we describe the general framework studied in this paper. The way we de-
scribe the contagion episode at a portfolio level is shown in Section 2.1, which summarizes

the setting of Hillairet and Lopez (2021). The assumptions are discussed in Section 2.2.

2.1 Description of the portfolio

We follow the general framework of Hillairet and Lopez (2021) to model our portfolio. We
have n policyholders, whose status with respect to the cyber event is described by a ran-
dom vector V; = (T}, C;, U;)1<i<n. The vectors (V;)i<i<, are assumed to be independent,

and represent the following time-to-event variables:
e T} is the time at which policyholder ¢ is hit by the cyber virus;

e U; is the time required to deliver immediate assistance to the policyholder (for

example restarting its activity), hence the claim is "solved" at time T; + Uj;

e (; is the time at which policyholder ¢ manages to implement a protection that

prevents the attack.

If C; < T;, the protection is achieved before the infection, and the potential victim is
never hit. Let us also note that P({7; = oo}) may be strictly positive: in many attacks,
some potential victims will never be hit, even if they do not implement protection.

The total number of victims in the portfolio is then 91 = zn: 17,<¢,, while the number

=1
of policyholder to assist at a given time ¢ is

n n
jt = § :1T¢SC¢1T¢St - E :1T¢SC7; 1Ti+U¢§t'
=1 =1

One is typically interested in the distribution of 9%, and on the distribution of sup,(J;),
which represents the maximum number of victims to assist at some given time. This
quantity is important, since the insurance company may fail to deliver its assistance

service if this number exceeds its capacity of response.



2.2 Discussion on the assumptions

In this simple framework, we assume that, after time Cj, the protection against the threat
is perfect. This assumption may be questionable, especially for large organisations. Some
of them, even after identifying the vulnerability and knowing how to solve it, may have
difficulties to implement a solution that protects their whole information system. More-
over, the protection is not only a matter of technique: human behavior (for example,
in the case of phishing campaigns, individuals clicking on malicious weblinks) may con-
tribute to lower the protection. To solve this issue, a possible and simple way to proceed
is to consider a random variable C; such that P(C; = o0) # 0, which is a way to lower the
ability of protecting oneself.

Let us also notice that the way the population protects itself from the threat can also
be incorporated in the modeling of 7. Hence, C' can represent the additional protection
that will implement the portfolio community (thanks to the specific help and attention
devoted by the insurer) compared to the general population.

The strongest assumption is the independence between policyholders. This assumption
is questionable, because connected entities may be more likely to be stroke by the same
attack. Nevertheless, the portfolio is supposed to be a small population compared to the
global one, so that the contagion is more likely to come from outside than from inside,
which is, apart from the simplicity, the reason for relying on this assumption. Moreover,
as it will be shown in Section 3.1, we can introduce covariates to materialize the fact that
policyholders belong to some similar classes of risk following different temporal evolutions.
This is a way to introduce dependence through this characteristic, without needing to

model all the connections between policyholders as in Fahrenwaldt et al. (2018).

3 Model for the cyber pandemic

This section is devoted to a way to consider the connectivity between classes of actors
through a simple epidemiological model, and to take it into account to model the infection
variable T In section 3.1, we introduce the multi-group SIR model, which is a commonly
used tool (see for example Brauer et al. (2012)) to represent the spread of a contagion
at a macroscopic level. Section 3.2 explains how to translate this type of macroscopic
models in the framework of section 2.1. Finally, section 3.3 provides a simple formula to

compute the final size of such a contagious episode that may be useful for calibration.



3.1 Multi-group SIR

Compartmental models are a common way to describe contagious events in epidemiology,
since McKendrick (1925) and Kermack and McKendrick (1927). In Hillairet and Lopez
(2021), a SIR model is used to describe the evolution of the cyber epidemic at a global
level (hence to determine the distribution of 7). The SIR (for "Susceptible - Infected -
Recovered") model is one of the most simplest of compartmental model. Each member

of the population belongs to one of the three categories:
e S = the Susceptibles, that is the entities that can be stroke by the attack;

e [ = the Infected, that should be understood as the entities that are currently con-

tagious, in the sense that they contribute to the spread of the epidemic;

e 1R = the Recovered, sometimes called "Removed", are the ones for which contagion

has been stopped.

Let us note that the status R does not mean that the crisis is over for the entity. The
complete recovery can take much longer than the whole duration of the epidemic. In a
biological epidemic, the category R gathers individuals who recovered, and the ones who
died.

The evolution of each category through time is then described by a system of dif-
ferential equations. When the population is heterogeneous (in our case, the targeted
population may include entities from various activity sectors, like mining, construction,
finance, ...), multi-group SIR models are a way to generalize this approach. Let’s consider
that we have d categories in the targeted population, and define, for all j = 1,...,d , the
quantities s;(t), i;(t), r;(t), denoting respectively the number of Susceptibles in category
J at time ¢, the number of Infected in category j at time ¢, and the number of Removed
in category j at time t. Next, following Magal et al. (2018), the evolution of each of these

groups is given by

dSC]l;it) - <{O‘j(t)+zﬁk,ﬂk(t)}) s;(t), (3.1)

diél'—z@ - {QJ(t)JFZﬂkﬂk(t)}sj(t)—’inj(t), (3.2)
i = i) 29



The coeflicient (3, ; materializes how much the category k infects the category j. Let
us note that the matrix B = (ﬁk»j)lgk,jgd may not necessarily be symmetric (a category k
can protect itself against category 7 more than the category j protects itself from category
k). Compared to a classical multi-group SIR model as in Magal et al. (2018), we added
the functions «;(t). This is to model the fact that the initialization of the attack may be
caused by a burst of continuous attack. Typically, in the following, we will assume that
a;(t) = ajli<y,, where o; > 0 and t is the time after which the hackers stop spreading
the virus (which propagates itself only through the contagion after t).

Let us note that the matrix B can also be used to simultaneously describe the risk
of direct cross-infection as well as the risk of operating loss resulting from the attack

affecting the activities of companies connected to the infected one.

3.2 From the multi-group SIR to the impact on an insurance

portfolio

Let x; denote the category to which the i—th policyholder belongs. The hazard rate
function is defined as

P(T; € [t,t + dt]|T; > t)
dt—0t dt

If the portfolio is considered like a random sample from a population governed by the

multi-group SIR, we have

)\Tz(t) = {ij(t) + Zﬁk’]zk(t)} s if X; = j

The hazard rate entirely defines the distribution of a random variable. In our case, the
considered variables T; are durations. Hence the hazard rate is more adapted to describe
their dynamical evolution than the density. Indeed, if Az, (¢) is high, this means that the
current (i.e. at time t) level of infection is high. We clearly see in this formula that this

hazard function is logically higher when the current number of infected is high.

3.3 Total number of victims

Given a set of parameters describing the contagion according to equations (3.1) to (3.3),
the real time trajectory of the infection is only known by numerically plotting each of

the curves (s;,4;,7;) which can be time-consuming in absence of closed formula. On the



other hand, if one only wants to focus on the final number of infected computers, this
total number of victims in each class can be retrieved much faster, solving a fixed-point
problem. It can also help to perform a faster calibration of a model.

Let 7;(00) = limy_,, 7j(t). Since every Infected ultimately becomes Removed after a
finite amount of time, 7;(co) represents the total number of Infected in class j, that is the
quantity we want to determine. Define r(oo) = (r;j(00))1<j<a- Let A; = [ o (t)dt, for

j=1,...,d. For x = (x1,...,24)"", where " denotes the transpose, let

@;(x) = i;(0) + 5,(0) {1 —exp (—Aj -y 5—@») } ,

1 1

and ®(x) = (®,(x))1<j<4. The vector r(oco) is the unique solution of the equation
r = ®(r),

on R={r:0<r; <s;(0)+1;(0)}.

This result can be retrieved from Magal et al. (2018), on multi-group SIR models,
with the only modification that we introduced the presence of the terms ¢;. Finding the
solution of this fixed point equation can be done relatively fast by taking an arbitrary
value ry and studying the sequence r, ;1 = ®(r,) which can be shown to converge to the

solution.

4 Illustration

The use of the multi-group SIR can be illustrated by studying the propagation of a cyber
event across different sectors of activity from an economy. This allows to model the
contagion effects and the interactions between sectors. Another interest of this model is
the ability to quantify the impact of different initial scenarios on the size of the crisis. For
instance, one can assume that only one sector is initially targeted with a given intensity.

As in Hillairet and Lopez (2021), we will model a WannaCry-type event to illustrate
the use of this multi-group SIR model. For this empirical analysis we consider a portfolio
made of policyholders over five different sectors of activity. These sectors of activity have

been chosen according to categories from OECD, namely:
e Mining and quarrying

e Manufacturing



e Electricity, gas, water supply, sewerage, waste and remediation services
e Construction
e Total business sector services

In Section 4.1, we show how macroeconomic data can help to build a reasonable
contagion matrix B. Models for the reaction C are provided in Section 4.2 while the

empirical results are gathered in Section 4.3.

4.1 Example of calibration of the matrix B.

To use a multi-group model, we need some statistics of the interactions between sectors.
To obtain credible values, statistics from the OECD! about the origin of the added value
in function of the origin and destination sector in 2015 are used. The raw matrix of the
flows of added values (in millions of USD) is represented in Table 1 with the origin sector
in rows and the destination in columns. Our key assumption is that these flows of added
values also reflect the connectivity between sectors. This is of course questionable but

let us recall that our aim is only to get a reasonable idea of this connectivity to create a

benchmark.
Mining Manufacturing Energy Construction Services
Mining 225.52 1026.27 154.72 506.18 412.55
Manufacturing | 14.86 8654.41 94.61 1709.06 1362.29
Energy 4.92 342.46 674.89 165.10 284.47
Construction 1.41 58.85 12.55 3685.20 197.56
Services 33.62 4396.65 249.46 2164.84 22206.97

Table 1: Exchange of added value between sectors - OECD data, 2015. A line represents

the flow of added value sent from the corresponding sector to the sectors in columns.

In addition to the amount of the exchanges, we need the distribution of the companies
across sectors. Again the data from the OECD? in 2015 are used. Table 2 presents the

number of companies for each sector.

!Trade in Value Added (TiVA): Origin of value added in final demand
2SDBS Structural Business Statistics (ISIC Rev. 4) : Total number of enterprises, by sector



Sector Number of companies Percentage
Mining 66’492 0.20%
Manufacturing 3'068’178 9.02%
Energy 2207892 0.65%
Construction 48747747 14.34%
Services 25’768’765 75.79%

Table 2: Distribution of companies between sectors - OECD data, 2015

To obtain an interaction matrix from these data, some transformations must be per-
formed. First, we can assume that the flow of information between two sectors do not
depend on the direction of the economic exchanges. For this reason, the value of the
exchange between two specific sectors is taken as the sum of the exchanges in both di-
rections. Second, to model the amount of risk per company, the absolute value of the
exchanges is divided by number of companies in the origin sector. Finally, the matrix
is normalized such that the sum of the coefficients is equal to one. The final interaction
matrix B is then assumed to be proportional to the matrix By defined in Table 3, that is
B = 5B, where By contains all the information about the connectivity, and [ represents

a strength of the contagion.

Mining Manufacturing Energy Construction Services| Total
Mining 0,0634 0,2927 0,0449 0,1427 0,1255 10,6692
Manufacturing | 0,0063 0,0527 0,0027 0,0108 0,0351 |0,1076
Energy 0,0135 0,0370 0,0571 0,0150 0,0452 |0,1679
Construction | 0,0019 0,0068 0,0007 0,0141 0,0091 |0,0326
Services 0,0003 0,0042 0,0004 0,0017 0,0161 [0,0227
Total 0,0855 0,3934 0,1057 0,1844 0,2309 1

Table 3: Normalized Interaction matrix By.

According to this table, we see that the Mining & Quarrying sector is the most con-
tagious one, followed by the Energy sector. This is quite intuitive, as an attack stopping
the activity of those sectors will have strong effects on the activities of other sectors. This
high contagiousness is however to be nuanced by the small population of these sectors.
The sector receiving most of the cross-infection are the Services and Manufacturing ones.

The Services sector is indeed highly connected and represents a significant part of the



economy, explaining that it is a target of interest. As for the manufacturing sector, it
depends a lot on the supplies from other sectors, as from the Mining & Quarrying one
for instance. Moreover, companies in this sector often operate complex supply chains,

making them highly inter-connected as well.

4.2 Model for the reaction C

The reaction C' represents the time when the policyholders manage to implement a pro-
tection that prevents the attack, making them immune to the attack. It describes the
fastness to identify the incident and to communicate countermeasures that may prevent
the spread. It also reflects the behavior of the policyholders, in their reactivity concern-
ing the alerts. We will denote C; the random time at which the policyholder j gains
immunity. There is then a competition between two time-variables, with C; acting like a
right-censoring variable to the time of infection 7;. We implicitly assume that we consider
the part of the portfolio which is exposed to the risk (that is, none of the policyholders is
protected against the risk at the beginning of the episode).

As in Hillairet and Lopez (2021), we consider three scenarios for the response variable:

e From the time of response (71), the rate at which policyholders update their security
system is constant through time. This is described by a translated exponential
distribution:

A () = eilisr,

e From the time of response (73), the vigilance of the policyholders decreases through

time. This is modelled using a Pareto-type distribution:

AD(0) = ealt — 72+ 1/2) Lo, foray > 0

e Finally, the vigilance of the policyholders increases through time after the time of

response (73). A Weibull-type distribution is chosen for this scenario:

/\g)(t) = c3(t — 13)** 1>y, forag >0

The parameters of the three types of responses are taken such that E[C; —7;|C; > 7] = 1.
This makes the comparisons more legitimate, as the response distributions only differ by
the shape of its hazard function. In addition, for each scenario, different delays are

considered:

10



o A fast response: 7; = 3 days after the start of the event;
e A medium response: 7; = 5 days after the start of the event;

e A slow response: 7; = 7 days after the start of the event.

4.3 Empirical analysis

4.3.1 Multi-group SIR model: WannaCry-type scenario

To illustrate the use of the multi-group SIR model in the modeling of a cyber event, we
calibrate it on a WannaCry-type event.

The first wave of infections being relatively fast for this type of events, the event is
modeled over a period of ten days.

We first consider functions «;(t) = al;<,. This corresponds to a situation where there
is an initial burst of attacks during a short period (before ¢y, here we will take tg = 1
day), after which only the contagion between victims is involved in the propagation of
the cyber epidemic. Moreover, since the functions a; are identical, this means that the
attack targets all categories homogeneously.

We then need to calibrate the coefficient 3 for the contagion, and the burst intensity
« such that the final size of the epidemic is of the same order as the WannaCry event.
Following the steps of the calibration method in Hillairet and Lopez (2021) (with a slightly
different model), the number of victims is taken as 300’000 infections. We also use the
same total number of Susceptible as in Hillairet and Lopez (2021), estimated at 4’064°279
companies.

This leads to the following values:
a=7x10"

£ =1.845x 107"

The corresponding estimated function ¢ — ; during the ten first days of the WannaCry
crisis is shown in Figure 1. These parameters lead to 300’362 infections after ten days,

with a maximum of 31’112 victims in the Infected state at a given time.
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Figure 1: Function ¢t — 4, obtained for the first ten days using the estimated § and «

coefficients.

In this situation, the attackers strike the victims homogeneously. But due to the
differences in terms of connectivity, one may try to figure out what happens if the same
strength of attack is targeted against a specific category. Applying the first burst intensity
on one sector will allow to assess the impact of one sector on the size of the epidemic.
To analyze the effect of each sector we kept the same value for 5. Note that to make
things comparable, the coefficient a describing intensity must be adjusted to account for
the number of companies in each sector. To keep the intensity of the initial attack similar
similar (i.e., the same number of victims on the first day), a smaller value of « is needed
if the number of Susceptibles in that class is high and vice versa. The table 4 summarizes
the results for each scenario. The results are ordered starting from the sector having the

most negative impact on the size of the epidemic, to the one leading to the least impact.
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Targeted sector B a Total infected  Peak

Mining 1.845 x 107°  3.5000 702’566 88’404
Manufacturing | 1.845 x 107° 0.0776 5777998 69’401
Energy 1.845 x 107°  1.0769 469’942 53263
Services 1.845 x 107°  0.0092 258’737 277722

Construction 1.845 x 107° 0.0488 213’020 24’4K9

Table 4: Results of the scenarios targeting a single sector. The length of the initial attack
(to) is still 1 day.

We notice that the initial burst targeting the Mining and Quarrying sector leads to
the most important increase in the size of the epidemic. This is expected given the high
contagiousness of this sector represented by the coefficients of table 3. Moreover, as this
sector regroups a small number of companies, the burst intensity is very high leading to
almost all the sector’s companies being infected. A burst targeting the Manufacturing or
the Energy sector also increases the size of the epidemic. Note that the effect observed is
not totally surprising. This has been illustrated recently by the impact of the cyber-attack
of Colonial Pipeline® in May 2021, cutting off the distribution of oil in part of the US. In
the considered SIR model, the contagion matrix is based on the economic exchanges, that
might also capture the impact of a cyber-attack in term of operating loss, in addition to
the pure contagion by the cyber-virus.

On the opposite side of the table, we find the Construction sector. A burst targeting
this sector leads to a decrease of the size of the epidemic. Looking at the coefficients from

table 3, we notice that this sector is in average less contagious that the other sectors.

It is of course possible to analyze the effect of the different scenarios, at segment level.
Table 5 represents the proportion of infected in each sector in function of the initial target
of the hackers. Overall, we notice that the Mining & Quarrying and Energy sectors suffer
less when they are not directly targeted. On the opposite, the Manufacturing and Services
sectors see more infections when the intensity of the attack is focused in one of the sectors
interacting with them. It is also interesting to emphasize that the Services sector is more
affected when the other sectors are targeted directly, apart from the construction sector,

than when it is itself targeted by the initial burst.

3https://www.bloomberg.com /news/articles/2021-05-08 /u-s-s-biggest-gasoline-and-pipeline-halted-
after-cyberattack
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Targeted sector Mining Manufacturing Energy Construction Services
Uniform attack 1,06% 4,11% 0,99% 2,0"% 8,86%
Attack on Mining 97,77% 12,47% 1,34% 5,39% 20,04%
Attack on Manufacturing | 1,00% 15,70% 0,65% 2,99% 16,32%
Attack on Energy 0,97% 6,23% 67,53% 2,46% 13,47%
Attack on Construction 0,31% 2.3™% 0,20% 6,26% 5,45%
Attack on Services 0,26% 2,61% 0,22% 1,02% 7,89%

Table 5: Proportion of each sector affected by the epidemic

Looking at the infections between sectors we notice that the epidemic has the tendency
to be concentrated in the Services sector and, to a lesser extent, in the Manufacturing
sector. To illustrate this, figure 2 shows for each origin sector the proportion of infections
according to the destination sector. In this figure the case of a uniform attack across
sectors is considered. Note, that similar trends are observed in the different attack sce-
narios. This figure also confirms that a minority of the cross-contamination are targeting

the Mining & Quarrying and Energy sectors.

075

Destination

Mining

. Manufacturing

Energy

. Construction

Services

0.50

Destination of the infection

0.25

0.00

Mining Manufacturing Energy Construction Senices
Crigin of the infection

Figure 2: Cross-infection between sectors after a uniform burst (proportion by destination)

To have a better understanding of the behavior of the epidemic, it is also interesting
to look at the time evolution of the number of infected inside each sector. On figure 3
we can see that epidemic continues to grow only in the Services sector after a uniform

attack on the portfolio. In the other sectors, a slow decrease of the number of infected is
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observed from the time where the burst of attacks stops.

0754

Sector
71.Mining

0.50 ——  2.Manufacturing

— 3.Energy
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0.259

0.004

00 25 0 75 100
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Figure 3: Evolution of the proportion of infected - Uniform attack

Figure 4 represents the evolution of the proportion of infected for each sector after
a first burst targeting the Mining & Quarrying sector. Note that the y-axis has been
bounded to 4%, so that the effects of the infection remain readable for all sectors. Indeed,
the value of the peak for the Mining & Quarrying sector is very high at 70% of infected
companies after 10 hours of epidemic. Let us recall that it was the scenario having the
biggest effect on the size of the epidemic (Table 4). This graph shows that the number
of infected in the Manufacturing sector reacts quickly. With the epidemic developing,
the most hit sector is the Services one. The Energy sector suffers very little from the
infection. As said previously, similar observations are made on other scenarios, with the
Mining & Quarrying and Energy sectors suffering little from the cyber-attack when they

are not directly targeted.
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Figure 4: Evolution of the proportion of infected - Attack on Mining & Quarrying

4.3.2 Simulations results

To analyze the evolution and behavior of the epidemic inside a portfolio, we consider
10’000 exposed policies. Using the parameters estimated for the SIR model and the
response variable, 10’000 simulations are performed. The objective of this exercise is to
observe the sensitivity of the epidemic to different response types. This is done considering
the sector dimension and different initial attack scenario. The responses parameters used
are the ones described previously in section 4.2. In addition, we suppose that the victims
need in average 3 days of assistance (exponential variable U) to restart their activity.
Finally, we assume that the considered portfolio has the same composition as the
economy. Thus, the same sector distribution as the one used for the SIR model is applied.

Table 6 gives the number of policies inside each sector.

Sector Number of companies Percentage
Mining 20 0.20%
Manufacturing 902 9.02%
Energy 65 0.65%
Construction 1’434 14.34%
Services 7’579 75.79%

Table 6: Distribution of companies between sectors

First, we look at the impact of the different response’s scenarios on the final size

16



of the epidemic. For the time being, the uniform initial burst scenario is considered.
Table 7 presents different statistics about the total number of infected resulting from the
simulations. In addition, the average total number of infected is given for each sector.
From the portfolio figures, we see that the reduction of the total size of the epidemic
is relatively similar between the different type of responses. The exponential response,
corresponding to a constant awareness and rate of countermeasures implementation, seems
to have slightly better performances. As expected, faster response time leads to a bigger
reduction of the epidemic size. This reduction is not uniform across sectors. The biggest
reaction is observed in the Manufacturing and Services sector. Whereas the Mining &
quarrying and Energy sectors are less impacted. It is interesting to note that, at sector

level, the exponential response is not necessarily the most efficient.

Portfolio statistics Mean scenario - Sectors

Reaction Mean o Min Max | Mining Manuf. Energy Constr. Services

No reaction 741.75 26.31 647 840 0.21 37.20 0.63 29.89 673.81
Slow expo. 618.30 24.19 618 717 0.20 31.75 0.60 26.49 559.26
Slow Pareto 619.61 24.21 528 715 0.20 31.81 0.60 26.50 560.50
Slow Weibull | 622.55 24.18 528 717 0.20 31.93 0.60 26.99 563.22
Med. expo. 486.23 21.54 410 570 0.18 25.94 0.57 22.88 436.65
Med. Pareto | 486.34 21.51 406 583 0.18 25.92 0.57 22.90 436.76
Med. Weibull | 487.96 21.49 418 578 0.18 26.00 0.57 22.93 438.27
Fast expo. 340.71 18.08 272 415 0.17 19.54 0.53 18.90 301.56
Fast Pareto 340.65 18.05 273 414 0.17 19.53 0.54 18.91 301.50
Fast Weibull | 341.63 18.13 268 412 0.17 19.57 0.53 18.95 302.39

Table 7: Statistics on the number of victims depending on the reaction. Portfolio statistics
provide figures for the total number of victims (all sectors are gathered). The second part

shows the decomposition of the central scenario.

The peak of the epidemic is also of interest for an insurance company, as it represents
the maximum number of policyholders needing assistance at the same time. This can be
used to determine the needed response capacity. Table 8 presents the statistics related
to this peak. As for the size of the epidemic, the exponential response seems to have the
bigger effect on the peak. At sector level, the peak is most sensible to the response in
the Mining & Quarrying and Services sectors. On the other hand, it varies very little in

the Construction sector. Note that the slowest responses, after 5 and 7 days, have a very
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limited impact on the peak. Indeed, the peak of the epidemic happens earlier in most

cases.

Portfolio statistics Mean scenario - Sectors

Reaction Mean o Min Max | Mining Manuf. Energy Constr. Services
No reaction 216.04 3297 74 239 0.20 13.70 0.58 12.38 199.26
Slow expo. 21239 2024 73 192 0.19 13.29 0.56 12.29 195.27
Slow Pareto 21349 2226 73 191 0.19 13.35 0.56 12.30 196.45
Slow Weibull | 213.48 2250 73 195 0.19 13.37 0.56 12.30 196.44
Med. expo. 200.58 10.85 58 150 0.18 12.66 0.54 12.15 182.85
Med. Pareto | 203.79 11.62 58 148 0.18 12.74 0.54 12.18 186.14
Med. Weibull | 203.94 12.35 58 149 0.18 12.78 0.54 12.18 186.34
Fast expo. 171.23  6.68 49 107 0.17 11.50 0.51 11.89 153.00
Fast Pareto 17793 550 49 103 0.17 11.66 0.51 11.93 159.60
Fast Weibull | 178.83 6.79 49 104 0.17 11.73 0.51 11.95 160.65

Table 8: Statistics on the peak of the epidemic depending on the reaction. Portfolio
statistics provide figures for the total peak (all sectors are gathered). The second part

shows the decomposition of the central scenario

From these simulations we observe that the deployment of countermeasures has a
strong impact on the epidemic. This is particularly true in early responses scenario. Figure

5 illustrates this with the evolution of the number of Infected i; for a given simulation.
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Figure 5: Evolution of the proportion of Infected - Uniform burst.
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This impact is however not uniform across sectors. If the Services sector drives the
behavior of the portfolio, leading to very similar evolution, it is not necessarily the case
for the other ones. For instance, in the Construction sector the peak is in general ob-
served at the beginning of the epidemic. Figure 6 represents a typical evolution of the
epidemic inside this sector. We notice that the peak appears before the deployment of

countermeasures, thus limiting their effect.
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Figure 6: Evolution of the number of Infected in the Construction sector - Uniform burst.

The deployment of countermeasures also has variable efficiency depending on the initial
scenario of the epidemic ignition. As we have seen before, in table 4, the size of the
epidemic depends on the intensity and target of the initial burst. The latter also impacts
the speed of spreading of the epidemic. Table 9 shows for the most populated segment (ie.
Services) the impact of each response on the average final size of the epidemic as a function
of the initial attack intensity (scenarios considered in table 4). Table 10 summarizes the
impact on the average value of the peak of the epidemic. In both tables, impacts are
given as the relative deviation with respect to the non-reaction scenario. To complete the
analysis, tables 11 and 12 present the same results for the Construction sector, the second

most populated one.
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Uniform Mining Manufacturing FEnergy Construction Services

Slow expo. -17,00%
Slow Pareto -16,82%
Slow Weibull -16,41%
Med. expo. -35,20%
Med. Pareto -35,18%

Med. Weibull -34,96%

Fast expo. -55,24% -53,34% -54,20% -54,09%
Fast Pareto -55,25% -53,19% -54,16% -54,14%
Fast Weibull -55,12% -52,92% -53,95% -53,98%

Table 9: Services - Impact of the countermeasures on the final size of the epidemic in

function of the attack scenario

Uniform Mining Manufacturing FEnergy Construction Services
Slow expo. -2,01%
Slow Pareto -1,41%
Slow Weibull -1,42%
Med. expo. -8,24%
Med. Pareto -6,58%
Med. Weibull -6,48%
Fast expo. -23,22% -21,63%
Fast Pareto -19,91% -16.88% -17,63%
Fast Weibull -19,38% -16,29% -17,10%

Table 10: Services - Impact of the countermeasures on the peak of the epidemic in function

of the attack scenario

First, it is interesting to note that the countermeasures have a bigger effect on the
final size of the epidemic than on its peak of infections. This is particularly true for
slower responses, leading to a marginal reduction of the peak value. As expected, the
impact of countermeasures depends on the initial attack scenario. The biggest impact is
observed for an attack targeting the Construction sector and uniform burst. The smallest
ones are observed when the Mining & Quarrying, Manufacturing and Energy sectors are
targeted. Observing the behavior of the epidemic in these cases, we notice that targeting
these sectors leads to a quicker diffusion of the epidemic. The epidemic is then already
well developed and often the peak is passed when countermeasures are deployed. This

explains the smaller effect of the response in these scenarios.
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Services

Mining Manufacturing Energy Construction
-10,90% -11,45%
-10,83% -11,16%

-10,40%  -10,87%

Uniform
Slow expo. -11,37%
Slow Pareto -11,35%
Slow Weibull -11,04%

Med. expo. -23,45%
Med. Pareto -23,40%
Med. Weibull -23,29%
Fast expo. -36,77%
Fast Pareto -36,73%

Fast Weibull -36,60%

Table 11: Construction - Impact of the countermeasures on the final size of the epidemic

in function of the attack scenario

Uniform Mining Manufacturing FEnergy Construction Services

Slow expo. -0,72%
Slow Pareto -0,64%
Slow Weibull -0,60%

Med. expo. -1,80%
Med. Pareto -1,64%
Med. Weibull -1,58%
Fast expo. -3,94%
Fast Pareto -3,59%
Fast Weibull -3,45%

Table 12: Construction - Impact of the countermeasures on the peak of the epidemic in

function of the attack scenario

The same kind of observations as for the Services sector can be made for the Construc-
tion one. The loss of efficiency of the response is the most important when the Mining &
Quarrying sector is targeted and when it is itself targeted. In those case the response has
almost no impact on the peak. During these scenarios, the epidemic grows fast under the
effect of the initial burst. However, when this attack stops, the epidemic tends to decrease
slowly. Thus, most of the infections and the peak happen before the countermeasures,

explaining their limited impact.

From the observations on these two sectors, it is interesting to observe that the coun-

termeasures have less effects in scenarios targeting the most contagious sectors. In those
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cases, the development of the epidemic tends to be faster, with a majority of infections
happening before the time of response. For a given time of response, the different re-
sponse type led to similar effects on the epidemic. However, the exponential response,
corresponding to constant awareness of policyholders, seems to be slightly more efficient

in most cases.

5 Conclusion

In this paper, we show how to design stochastic accumulation scenarios for cyber insurance
through a flexible way that considers the connectivity between actors. Instead of requiring
to exactly know how policyholders are connected with each other (which seems quite
difficult), the model requires relatively few inputs. In the application, we showed how
to calibrate such a model based on macro-level data that can be retrieved more easily.
Of course, this calibration is not perfect since the indicators that we use are indirectly
linked to the question of cyber connectivity. Nevertheless, let us point out that the aim
of this scenario generation procedure is not necessarily prediction, but more about giving
reasonable ideas of the pattern of a cyber pandemic, playing with the infection dynamic
(here we gave the example of WannaCry, but other patterns can of course be considered)
and the connectivity assumption. Let us also notice that the approach we develop can also
be extended to model indirect consequences of a cyber incident: if an industrial sector is
very dependent from another, an attack on this key sector can lead to business disruption,
as it has been seen for example in the Colonial Pipeline attack (see Hobbs (2021)). In

which case, the contagion may spread not only through digital channels.
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