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In this working paper, we adapt the Heath-Jarrow Morton (HJM) framework by considering 
a constraint of convergence of future forward rates toward a constant exogeneous rate set e.g. 
by a regulator. This limit rate, called “ultimate forward risk” or UFR, was introduced by the 
EIOPA in 2015 to extrapolate the initial yield curve for maturities beyond the last liquid point. 
We show that adding a constraint of convergence in the HJM model impacts not only the term 
structure of interest rates but also the future variance of zero-coupon bonds.
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1 Introduction

The Solvency II directive recommends to evaluate the Best Estimate Liabilities (BEL) as the
sum of expected discounted future cash-flows. To discount liabilities cash-flows, an appropriate
term structure of discount factors is needed. From the no arbitrage pricing theory, the zero rates
related to the stochastic discount factors have to be risk-free, e.g. free from any counterparty risks.

There is no easy answer to the question of defining such a risk-free rate. Today in Solvency
II, the discount rates are based on interest rates swaps (IRS) adjusted by a credit spread. The
construction of this swap curve relies on the Smith-Wilson (SW) method (2001), described in the
EIOPA (2015) technical specifications. Beyond a chosen maturity - the last liquid point (LLP),
currently 20 years -, the forward rate is forced by regulatory rules, to converge with an exogenously
specified speed to a fixed long term level called the Ultimate Forward Rate (UFR).

This assumption of convergence is questionable as underlined by Jorgensen (2018). Neverthe-
less, if we admit it, the interest rate model used for simulations of future cash-flows should also
generate forward rates converging on average toward the UFR. There exist multiple approaches
for interest rate modeling and we refer the reader to the book of Brigo and Mercurio (2016) or
to Rebonato (2004) for a survey of methods. This article focuses on the Heath Jarrow Morton
framework (1990) which is is a standard in the industry since at least two decades. It encompasses
a wide variety of approaches like the Hull-White or the G2++ models. This article adapts the
HJM framework in order to force the convergence of future forward rates toward the UFR. We
show that adding such a constraint has various consequences on the term structure of zero-coupon
bond variances. Firstly, the shape of this term structure is fully determined by the function driving
the convergence of forward rates to the UFR in order to avoid arbitrages. Secondly, the curve of
zero-coupon bond variances converges at long term to zero. This slightly decreases the value at
risks of very long term bonds or liabilities. Thirdly, the adapted HJM model cannot anymore
explain flips from positive to negative values observed for some principal components of the yield
covariance matrix. Last but not least, the empirical illustration does not allow to conclude to
a fast convergence of forward rates to an ultimate one contrary to what is stated in the current
version of Solvency II.

The paper is structured as follows. We start by reviewing the main properties of the Heath
Jarrow Morton model. The next section summarizes the procedure to estimate parameters under
the real measure with a principal component analysis. This approach is illustrated in Section 4
with a dataset of swap rates from 2014 to 2020. In Section 5, we adapt the HJM framework to en-
sure the convergence of forward rates to a constant UFR at long term. Section 6 and 7 respectively
provide a numerical illustration and a multivariate extension.
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2 Heath-Jarrow-Morton (HJM) in a nutshell

We present in the next sections a very general framework in which the short term rate converges
at long term to a constant ultimate forward rate (UFR). This is inspired from the Heath-Jarrow-
Morton model (HJM 1990) that we review in this section. In such a setting, we consider an infinity
of instantaneous forward processes, denoted by f(t, T ) where 0 ≤ t ≤ T . Let us recall that f(t, T )

is is the interest rate in force at time t for a future investment or borrowing of duration dt at date
T . The zero-coupon bond price of maturity T at time t is denoted by P (t, T ). Using standard
non-arbitrage arguments, we can show that instantaneous forward rates are equal to

f(t, T ) = −∂ lnP (t, T )

∂T
,

or alternatively that P (t, T ) = exp
(
−
∫ T
t
f(t, s)ds

)
. On the other hand, the instantaneous risk-

free rate is a stochastic process denoted by (rt)t≥0 defined on a probability space
(
Ω, (Ft)t≥0 ,Q

)
that is such that

P (t, T ) = EQ
(
e−

∫ T
t rsds | Ft

)
.

By construction, the risk free rate is such that rt = f(t, t). We denote by W t = (W 1
t , ...,W

p
t )
>

a vector of p-Brownian motions defined on Ω, endowed with the natural filtration of W t noted
{Ft}t≥0 and a risk neutral probability measure Q. For a fixed maturity T, f(t, T ) is an Itô process
driven by the next SDE:

df(u, T ) = α(u, T )du+ σ(u, T )>dW u , (2.1)

where the drift α(u, T ) and the p-vector σ(u, T ) = (σ1(u, T ), ..., σp(u, T ))> are Fu-adapted pro-
cesses. To ensure that forward rate processes are well defined, we require that

∫ T
0
|α(u, T )|du and∫ T

0
|σ2
i (u, T )|du for i = 1, ..., p are finite almost surely. Therefore, the forward rate admits the

integral representation:

f(t, T ) = f(0, T ) +

∫ t

0

α(u, T )du+

∫ t

0

σ(u, T )>dW u , (2.2)

whereas the risk-free rate is:

rt = f(0, t) +

∫ t

0

α(u, t)du+

∫ t

0

σ(u, t)>dW u . (2.3)

Under the assumption that
∫ T

0

∫ s
0
|α(u, s)| du ds is finite, the zero-coupon bond price is equal to

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
(2.4)

= exp

(
−
∫ T

t

f(0, s)ds−
∫ t

0

∫ T

t

α(u, s)ds du−
∫ t

0

∫ T

t

σ(u, s)>ds dW u

)
.
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The cash account is denoted by (Bt)t≥0. This is the value of a deposit of one monetary unit

capitalized at risk-free rate till time t: Bt = exp
(∫ t

0
rsds

)
. Since rs = f(s, s), this cash account is

also equal to

Bt = exp

(∫ t

0

f(0, s)ds+

∫ t

0

∫ t

u

α(u, s)ds du+

∫ t

0

∫ t

u

σ(u, s)>ds dW u

)
. (2.5)

The next proposition introduces a condition on the drift of forward rates that guarantees the
absence of arbitrage.

Proposition 1. If the market is arbitrage free then the drift of forward rates α(t, T ) is related to
σ(t, T ) by the next relation:

α(t, T ) = σ(t, T )>
∫ T

t

σ(t, u) du . (2.6)

Proof. Under the risk neutral measure Q, discounted prices are martingales. In our framework the
discount factor is B−1

t and from Equations (2.4) and (2.6), the discounted bond price is equal to:

P (t, T )

Bt

= exp

(
−
∫ T

0

f(0, s)ds−
∫ t

0

∫ T

u

α(u, s)dsdu+

∫ t

0

S(u, T )>dW u

)
where S(u, T ) is a p-vector, integral of σ(u, s):

S(u, T ) = −
∫ T

u

σ(u, s) ds .

The discounted bond price is a martingale if and only if the drift of d
(
P (t,T )
Bt

)
is null. By the Itô’s

lemma, this differential is

d
(
P (t,T )
Bt

)
P (t,T )
Bt

=

(
1

2
S(t, T )>S(t, T )−

∫ T

t

α(t, s)ds

)
dt+ S(t, T )>dW t . (2.7)

The drift is null if and only if
∫ T
t
α(t, s)ds = 1

2
S(t, T )>S(t, T ). Deriving this last equality with

respect to T leads to the condition (2.6).

A direct consequence of this last proposition is that the zero-coupon bonds earns on average the
risk-free rate under Q.

Corollary 2. Under the risk neutral measure, the zero-coupon bond is solution of the SDE:

dP (t, T )

P (t, T )
= rtdt−

(∫ T

t

σ(t, s)ds

)>
dW t . (2.8)

for t ≤ T .
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Proof. By construction, the bond price is such that P (t, T ) = exp
(
−
∫ T
t
f(t, s)ds

)
and

d

(
−
∫ T

t

f(t, s)ds

)
= f(t, t)dt−

∫ T

t

df(t, s)ds

=

(
rt −

∫ T

t

α(t, s)ds

)
dt−

(∫ T

t

σ(t, s)>ds

)
dW t .

Then using the Itô’s lemma with the variable −
∫ T
t
f(t, s)ds leads to

dP (t, T )

P (t, T )
=

rt−∫ T

t

α(t, s)ds+
1

2

(∫ T

t

σ(t, s)ds

)>(∫ T

t

σ(t, s)ds

)
︸ ︷︷ ︸

=0

 dt

−
(∫ T

t

σ(t, s)ds

)>
dW t ,

where we have used the condition (2.6).

3 Econometric estimation of the HJM model

Models used for risk management have to generate sample paths for interest rates that are compli-
ant with the observed behaviour of financial markets. This explains why parameters are estimated
from time-series sampled under the real measure, denoted by P. On the contrary, models used for
option pricing must foremost replicate the current market prices on a given day. In this case, we
need instead to estimate parameters under the risk neutral measure Q . This is usually performed
by minimizing the mean square error between market and modeled prices of a sample of deriva-
tives. This section focuses on the first case and proposes an estimation procedure under the real
measure P.

Under the assumption that forward rates are ruled by Equation (2.1), we infer that forward rates
are solutions of the following SDE under the real measure

df(u, T ) =
(
α(u, T ) + σ(u, T )>θu

)
du+ σ(u, T )>dW̃ u , (3.1)

where θu = (θ1
u, . . . , θ

p
u)
> is a p-vector of Ft-adapted processes and W̃ u = W u − θu is a p-vector

of Brownian motions under P. Informally, the vector θu defines the market risk premiums of each
risk factors. The change of measure from P to Q is defined by the following Radon-Nykodym
derivatives

dQ
dP

∣∣∣∣
t

= exp

(
−
∫ t

0

θ>s dW̃ s −
1

2

∫ t

0

||θs||2ds
)
.
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We denote by γ(u, T ) = α(u, T ) + σ(u, T )>θu the drift of forward rates under the real measure
and rewrite the forward rate of maturity t+ τ under P

f(t, t+ τ) = f(0, t+ τ) +

∫ t

0

γ(u, t+ τ) du+

∫ t

0

σ(u, t+ τ)>dW̃ u .

In order to estimate the model, we need the dynamics of zero-coupon bond prices under P. At
time t, the bond price of maturity t + τ is related to forward rates by the relation P (t, t + τ) =

exp
(
−
∫ t+τ
t

f(t, s)ds
)
. The differential of the integral of forward rates is:

d lnP (t, t+ τ) = f(t, t)dt−
∫ t+τ

t

df(t, s)ds (3.2)

=

(
rt −

∫ t+τ

t

γ(t, s)ds

)
dt−

(∫ t+τ

t

σ(t, s)>ds

)
dW̃ t .

If we remember the definition of γ(t, s) and condition (2.6), using the Itô’s lemma with the state
variable lnP (t, t+ τ) allows us to prove that P (t, t+ τ) is a geometric Brownian motion

dP (t, t+ τ)

P (t, t+ τ)
=

(
rt −

∫ t+τ

t

σ(t, s)>θtds

)
dt

−
(∫ t+τ

t

σ(t, s)ds

)>
dW̃ t .

In order to estimate parameters under P, we assume that the drift of lnP (t, t + τ) is stationary
and then does not depends upon t:

rt −
∫ t+τ

t

γ(t, s)ds ≈ g(τ) .

This assumption is strong but is commonly accepted by practioners. Let us assume that we sample
d ≥ p bonds prices at n + 1 equispaced times {t0, ..., tn}. The interval between two successive
sampling times is ∆ whereas the maturities of bond prices are denoted {τ1, ..., τd}. Firstly, we
calculate the first order differences of log-bond prices (the yield):

yi(τj) = lnP (ti+1, ti+1 + τj)− lnP (ti, ti + τj) i = 1 . . . n , j = 1, . . . , d .

According to Equation (3.2), the vector yi = (yi(τj))j=1,...,d is the realization of a multivariate
random variable Y = {Y1, ..., Yd} of yields where

Yj =g(τj)∆−
(∫ t+τj

t

σ(t, s)>ds

)(
W̃ t+∆ − W̃ t

)
j = 1, ..., d. (3.3)

This last equation emphasizes that functions σ(., .) define the covariance matrix of Y . For this
reason, we calculate the d× d empirical covariance matrix of (yi)i=1,...,.n and denote it by Σ. The
matrix Σ is positive definite and symmetric. Then it admits the following representation
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Σ = Ψ ΛΨ> ,

where Ψ is the d × d matrix of normed right eigenvectors, Ψ = (Ψ1, . . . ,Ψd) of the covariance
matrix. The Ψk = (Ψk,1, ...,Ψk,d)

> are vectors of dimension d. Λ = diag (λ1, ..., λd) is the diagonal
matrix of ordered eigenvalues such that:

λ1 ≥ λ2 ≥ . . . ≥ λd .

The occurrence of Y form a cloud of points in a d dimensions space. The eigenvectors define an
new orthonormal basis and the variance of the cloud of points is maximal in each axis direction.
The coordinates of observations yi in this new basis are given by: Ψ>1 yi

...
Ψ>d yi

 i = 1, ..., n .

The origin of the orthonormal basis is an estimate of the expectation of Y , ȳ = (ȳ1, ..., ȳd)
> =

1
n

∑n
i=1 yi. Whereas an estimate of variance along each axis is the associated eigenvalues:

̂
E
((

Ψ>j Y −Ψ>j E (Y )
)2
)

= λj j = 1, ..., d .

The total variance is the sum of variances along axis:
∑d

j=1 λj. In practice, a projection of the
cloud of (yi)i=1,...,n in a subspace spanned by the two or three largest eigenvalues, is sufficient to
explain more than 90% of the total variance. James and Weber (2000, Chapter 16) found that two
factors explain about 95% of the variation in the term structure movements. Buhler et al. (1999)
carry out an empirical study of one and two-factor Heath, Jarrow, and Morton type models along
with one and two-factor inversion type models. Let us imagine that we perform this projection on
a subspace of dimension p. In this case, the distribution of Y can be approximated by

Yj ≈ ȳj +

p∑
k=1

Ψj,k

√
λkXk , j = 1, ..., d (3.4)

where Xk are p independent normal random variables, N
(

0,
√

∆
)
. A comparison of Equations

(3.3) and (3.4) reveals that an estimator σ̂(t, s) = (σ̂k(t, s))k=1,...,p of σ(t, s) must minimize the
spreads between Ψj,k

√
λk and −

∫ t+τj
t

σk(t, s)ds for all j ∈ {1, ..., d}:

σ̂k(., .) = arg min
σk(.,.)

d∑
j=1

(
−
∫ t+τj

t

σk(t, s)ds−Ψj,k

√
λk

)2

k = 1, ..., p . (3.5)

In practice, we choose a-priori a functional form for σk(t, s) and estimate parameters of this function
by least square minimization of the above criterion. This method is illustrated in the next section.
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4 Numerical Illustration

In order to illustrate this section, we fit the HJM model to zero-coupon yields bootstrapped
from ICE swap rates in Euro from the Federal Reserve bank of St Louis1. The period ranges
from the 1/8/2014 to the 21/2/2020. Tenors run from 1 year to 30 years (d = 30). The yields for
missing tenors are interpolated with natural cubic splines. We consider a model with two Brownian
motions, p = 2, and that forward rates are solution of:

df(t, T ) = α(t, T )dt+ σ1(t, T )dW 1
t + σ2(t, T )dW 2

t (4.1)

where σ1(.) is constant and σ2(.) is the product of a linear function and a decreasing exponential

σ1(t, t+ τ) = σ1 , (4.2)

σ2(t, t+ τ) = σ2(1 + β1τ)e−β2τ .

Notice that Amin and Morton (1994) analysed six specifications for the volatility function of the
forward rates in a Heath, Jarrow, and Morton framework. In order to estimate the four parameters
(σ1, σ2, β1, β2), we integrate these volatility functions over [t, t+ τ ]:

∫ t+τ

t

σ1(t, s)ds = σ1 τ , (4.3)∫ t+τ

t

σ2(t, s)ds = σ2

(
β1 + β2

β2
2

(
1− e−β2τ

)
− β1

β2

τ e−β2τ
)
.

The estimate σ̂1 of σ1 is obtained by minimization of Equation (3.5):

σ̂1 = arg min
σ1

30∑
j=1

(
−σ1 τj −Ψj,1

√
λ1

)2

,

where Ψ1 is the normed eigenvector associated to the largest eigenvalue, λ1 of the matrix of
covariance Σ. This first component explains 99.12% of the total variance of Y . The estimate σ̂2,
β̂1 , β̂2 of σ2, β1 and β2 are obtained in a similar manner:

σ̂2, β̂1, β̂2 = arg min
σ2,β1,β2

30∑
j=1

(
−σ2

(
β1 + β2

β2
2

(
1− e−β2τ

)
−

β1

β2

τ e−β2τ
)
−Ψj,2

√
λ2

)2

,

where Ψ2 is the normed eigenvector associated to the second largest eigenvalue of Σ. This com-
ponent explain 0.77% of the total variance. Estimates are reported in Table 4.1. σ̂1 and σ̂2 are

1https://fred.stlouisfed.org/
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respectively around 3 and 1 basis points whereas β̂1 , β̂2 are negative. Figure 4.1 compares the
integrated volatilities (4.3) to their empirical counterparts. These graphs confirms the excellent fit
provided by functions (4.2).

Parameters Estimates
σ̂1 0.0003617341
σ̂2 0.0001714276
β̂1 -0.0999049663
β̂2 0.0308140508

Table 4.1: Estimates of parameters for volatility functions 4.2.
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Figure 4.1: Comparison of Ψj,k

√
λk and −

∫ t+τj
t

σk(t, s)ds for k = 1, 2 and τj = 1, ..., 30 years.

5 A one-factor HJM model converging to the UFR

In Solvency II, long term interest rates and then forward rates converge to an ultimate forward
rate (UFR) that we denote by f∞ in the sequel. This ultimate forward rate is computed as an
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average of past 1 year real rates summed up to the targeted inflation in the Eurozone. The EIOPA
calculates the UFR as follows:

f∞ =
1

n

A∑
k=1960

yk + inflation target ,

where A is the last elapsed calendar year and yk is the annual real rate for year k (the real rate
is the nominal rate minus the inflation). This real rate is the equally weighted average of real
rates for seven countries chosen by EIOPA. In 2020, the UFR was f∞ = 3.75%. if we admit this
assumption, the interest rate model used for simulations of future cash-flows should also generate
forward rates converging on average toward the UFR. We show in this section how to adapt the
HJM model in order to force the convergence of forward rates to f∞. In particular, we require that
the expectation of future forward rates converge to the UFR as follows

lim
t→∞

EQ (f(t, t+ τ)) = f∞ ∀ τ ≥ 0. (5.1)

This constraint is not fulfilled in the HJM framework. To see this, let us consider a HJM model
and assume that volatility functions σ(u, s) are deterministic functions of times u and s. Under
the EIOPA assumption that limt→∞ f(0, t) = f∞, we infer from Equation (2.2) and Proposition 1
that forward rates converge to:

lim
t→∞

EQ (f(t, t+ τ)) = f∞ + lim
t→∞

EQ
(∫ t

0

σ(u, t+ τ)>
∫ t+τ

u

σ(u, s) dsdu

)
.

The second term of the right hand side of this equation is not null and therefore forward rates do not
tend to f∞. Another argument in favour of modifying the HJM framework is that EQ (f(t, t+ τ))

does not converge to a finite value in many circumstances. To see this, let us consider a one
factor HJM model. We have seen in the previous section that a good fit of the first principal
component is achieved with a constant volatility function, i.e. σ(u, s) = σ1. In this case, the
expected instantaneous forward rate is equal to

EQ (f(t, t+ τ)) = f(0, t+ τ) + EQ
(∫ t

0

σ1

∫ t+τ

u

σ1 dsdu

)
= f(0, t+ τ) + σ2

1

(
1

2
t2 + τt

)
,

and tends to infinity when t→∞. The quadratic growth of forward rates with time also implies
that long term liabilities are on average less expensive in the future than today (at least if σ2

1

is significantly different from zero). This has a direct impact on the calculation of the capital
solvency requirement (CSR) at a future date t >> 0.

In order to ensure the convergence of forward rates, we consider a continuous differentiable func-
tion, h(t, T ) : R2,+ → [0, 1] such that h(0, T ) = 0 and limt→∞ h(t, T ) = 1 for all T ≥ t. We call
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h(t, T ) as the “convergence function”. The HJM model in adapted in the following manner. We
assume that instantaneous forward rates are equal to

f(t, T ) = f(0, T ) + h(t, T ) (f∞ − f(0, T )) +

∫ t

0

σ(u, T )dWu , (5.2)

where (Wt)t≥0 is a Brownian motion and σ(u, T ) is a Fu-adapted process. By construction, the
condition (5.1) of convergence to the UFR is well fulfilled. We assume that h(t, T ) is separable
with respect to t and T in the sense that we can rewrite them as a product of two functions
h(t, T ) = h1(t)h2(T ) with the following conditions:

h1(0) = 0 , lim
t→∞

h1(t) = 1 , lim
T→∞

h2(T ) = 1 .

In the empirical illustrations, we consider three convergence functions. The first one is independent
from T and is an exponential concave function of t:

h(t, T ) = h1(t) =
(
1− e−β0t

)
. (5.3)

In the second case, the convergence function h(t, T ) is the product ofh1(t) =
(
1− e−β0t

)
,

h2(T ) =
(

1− e−β1(T−β2)2
)
.

(5.4)

The last function that we consider, is very similar to the second one excepted that it depends on
the fourth power of T : h1(t) =

(
1− e−β0t

)
,

h2(T ) =
(

1− e−β1(T−β2)4
)
.

(5.5)

The model such as defined by Equation (5.2) is not arbitrage free. We will see that arbitrages may
be avoided if and only if the variance of forward rates takes a specific form. If we refer to Equation
(2.1), we can reframe our model into the HJM framework if

∫ t
0
α(u, T )du is equal to the product

of h(t, T ) and the spread between f∞ and f(0, T ):∫ t

0

α(u, T )du = h(t, T ) (f∞ − f(0, T )) .

Since the function h(t, T ) is differentiable with respect to t, the function α(., .) is equal to

α(t, T ) =
∂h(t, T )

∂t
(f∞ − f(0, T )) . (5.6)

We use this relation in order to find the expression of the volatility function that ensures the
absence of arbitrage.
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Proposition 3. The model (5.2) is arbitrage-free if and only the volatility function is equal to:

σ(t, T ) = ±
∂h(t,T )
∂t

(f∞ − f(0, T ))√
2
(
f∞
∫ T
t

∂h(t,s)
∂t

ds−
∫ T
t

∂h(t,s)
∂t

f(0, s)ds
) . (5.7)

If h(t, T ) = h1(t) is independent from T , then

σ(t, T ) = ±
∂h1(t)
∂t

(f∞ − f(0, T ))√
2∂h1(t)

∂t

(
f∞ (T − t) + ln P (0,T )

P (0,t)

) , (5.8)

for all t ≤ T .

Proof. From Equation (5.6), we infer that the integral of α(t, s) from t to T is equal to∫ T

t

α(t, s)ds = f∞

∫ T

t

∂h(t, s)

∂t
ds−

∫ T

t

∂h(t, s)

∂t
f(0, s)ds , (5.9)

On the other hand, Proposition 1 states that
∫ T
t
α(t, s)ds = 1

2

(∫ T
t
σ(t, s) ds

)2

in absence of arbi-
trages. Therefore the integral of the volatility function becomes∫ T

t

σ(t, s)ds = ±

√
2

(
f∞

∫ T

t

∂h(t, s)

∂t
ds−

∫ T

t

∂h(t, s)

∂t
f(0, s)ds

)
.

Deriving this last expression with respect to the expiry T leads to Equation (5.7). If h(t, T ) = h1(t)

is independent from the expiry T , the second term in the right hand side of Equation (5.9) is
rewritten as ∫ T

t

∂h(t, s)

∂t
f(0, s)ds =

∂h(t)

∂t

∫ T

t

f(0, s)ds,

where the integral of forward rates is by definition equal to the log-ratio of two zero coupon bond
prices:

−
∫ T

t

f(0, s)ds = −
∫ T

0

f(0, u)du+

∫ t

0

f(0, u)du

= ln
P (0, T )

P (0, t)
.

We infer from this last expression that∫ T

t

α(t, s)ds =
∂h(t)

∂t
f∞ (T − t) +

∂h(t)

∂t
ln
P (0, T )

P (0, t)
. (5.10)

from which we retrieve Equation (5.8).
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According to Corollary 2, the instantaneous volatility of bond prices is proportional to the integral∫ T
t
σ(t, s)ds. From Equation (5.7), this integral is fully determined by the convergence function

h(t, T ) and by the initial term structure of forward rates. Furthermore Equation (5.8) reveals that
the ultimate forward rate, f∞ , has to fulfill the following constraint

f∞ ≥
∫ T
t

∂h(t,s)
∂t

f(0, s)ds∫ T
t

∂h(t,s)
∂t

ds
,

for all T ≥ t. Otherwise the volatility function is not defined. A last important point concerns the
asymptotic behaviour of the volatility function. As limt→∞ h(t, T ) = 1, the first order derivative
with respect to t converges to zero, i.e. limt→∞

∂h(t,T )
∂t

= 0. As σ(t, T ) is directly proportional to
this derivative, we infer that limt→∞ σ(t, T ) = 0.

6 Estimation of the one-factor HJM-UFR model

To calibrate a HJM model, we select a priori a volatility function and the drift of forward rates
under Q is then fully determined by these functions. This approach is inverted for a HJM-UFR
model. We start by defining a convergence function h(t, T ), that drives forward rates. This choice
fully determines the shape of the volatility function. We denote by β = {β0, β1...} the vectors
of parameters involved in the definition of h(t, T ). If we intend to use this model under the real
measure P, the vector β is estimated in a similar manner to Section 3. Let us consider a data set
of d zero-coupon bond prices of maturities τj=1,...d . We denote by λ1 the largest eigenvalue of the
covariance matrix of first-order differences of log-bond prices. As previously, Ψ1 is the eigenvector
paired to λ1. An estimator β̂ under P is the set of parameters minimizing the spread between
observed and modeled volatilities of zero-coupon bonds:

β̂ = arg min
β

d∑
j=1

(
−
∫ t+τj

t

σ(t, s) ds−Ψj,1

√
λ1

)2

. (6.1)

The integrals
∫ t+τj
t

σ(t, s)ds are calculated with Equation (5.7). The integrals
∫ T
t

∂h(t,s)
∂t

ds and∫ T
t

∂h(t,s)
∂t

f(0, s)ds are numerically computed.

As illustration, we apply this method to ICE swap rates in Euro from the 1/8/2014 to the
21/2/2020. We perform a principal component analysis of the covariance matrix of first-order
differences of log-bond prices. Next, we solve the optimization problem (6.1) with d = 30 for
convergence functions (5.3), (5.4) and (5.5). The reference date t, for the calculation of forward
rates is set to the 21/2/2020.

Finally, we fit a Smith-Wilson model2 to ICE swap rates in Euro on the 21/2/2020 (See ap-
pendix). We impose f∞ = 3.75%. The Smith-Wilson model serves to extrapolate swap rates and

2The Smith-Wilson model (2001) interpolates market swap rates for short term maturities and extrapolate the
yield curve for long term maturities, using the ultimate forward rate. We refer the reader to the EIOPA technical
note from 2015.
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forward rate curves for maturities beyond 30 years. We use it to analyse the volatility of bond
prices for maturities longer than 30 years. Forward rates calculated with the Smith-Wilson model
converge at long term toward f∞, i.e. limτ→∞ f(0, τ) = 3.75%.

Parameter h(t, T )

Estimates Eq. (5.3) Eq. (5.4) Eq. (5.5)

β̂0 3.3759e-05 1.3357e-04 8.9420e-05
β̂1 3.05710e-03 6.2140e-05
β̂2 0.0000 1.4952e-03

Table 6.1: Parameter estimates of convergence functions (5.3), (5.4) and (5.5).

The parameter estimates are reported in Table 6.1 for the three convergence functions, (5.3), (5.4)
and (5.5). Figure 6.1 compares −

∫ τj
0
σ(0, s)ds for τj ranging from 1 to 60 years and the Ψj,1

√
λ1

for the first 30 years. The fit with the two convergence functions depending on T is excellent while
the first one fails to replicate the trend of the scaled eigenvector. For convergence function (5.4)
and (5.5), we observe an inflection point for maturities above 30 years: at long term, the curve of
bond volatilities tends to become flat. This figure also displays the zero-coupon bond volatilities
at time t = 30 (i.e. −

∫ 30+τj
30

σ(30, s)ds) for maturities from 1 to 60 years. As mentioned at the
end of the previous section, the whole term structure of volatilities slowly flattens to zero when
t increases. This may be seen as an advantage or a drawback. Using the HJM-UFR model for
long-term risk management ensures that bond volatilities will not explode with the time-horizon.
On the contrary, we can also argue that we run the risk to underestimate the exposure to interest
rates fluctuations at long term.
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Figure 6.1: Comparison of Ψj,1

√
λ1 and −

∫ t+τj
0

σ(0, s)ds. Left, mid and right plots: h(t, T ) in Eq.
(5.3), (5.4) and (5.5).

In Figure 6.2, we plot the estimated convergence function (5.4) at various dates and for various
maturities. The right and left plots both reveal that the convergence of h(t, T ) to 1 when t→∞
and T → ∞, is extremely slow. We can legitimately raise the question of the realism of the
assumption made by EIOPA. In Solvency II, interest rates and forward rates converge to the
UFR for maturities beyond 60 years. In our framework with the second convergence function,
h(t = 60, T = 80) =0.00175 which is very far from 1. Even after 1000 years, h(t = 1000, T =

1020) = 0.0855 is still very low! Our estimation procedure clearly emphasizes that it is impossible
to reconciliate the assumption of quick convergence to an UFR with the observed term structure of
bond volatilities. Combining a quick convergence and a realistic term structure of bond volatilities
is possible only if we drop the assumption of absence of arbitrage. Jorgensen (2018) arrives to a
similar conclusion but based on the analysis of the term structure of interest rates.
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Figure 6.2: Convergence function h(t, T ), such as defined in Eq. (5.4) .

We compare next the expected forward rates to those computed with the 1-dimension HJM model.
We denote by f̄UFR(., .), these expected rates obtained with the HJM UFR model:

f̄UFR(t, t+ τ) = EQ (f(t, t+ τ)) = f(0, t+ τ) + h(t, t+ τ) (f∞ − f(0, t+ τ)) ,

where h(t, T ) given by Equation (5.4). We denoted these rates by f̄HJM(., .) in the HJM model:

f̄HJM(t, t+ τ) = EQ (f(t, t+ τ)) = f(0, t+ τ) + σ2
1

(
1

2
t2 + τt

)
.

As mentioned earlier, limt→∞ EQ (f(t, t+ τ)) = +∞. Nevertheless, the estimate σ̂1 = 0.0003617341

is very small and the convergence is then extremely slow. The right plot of Figure 6.3 shows the
curves of f̄UFR(t, t + τ) for t ∈ {0, 30, 60, 90} and maturities from 1 to 20 years. We observe that
expected forward rates converge after 60 years to a value slightly close to 3.75%. This is mainly
due to the fact that forward rates calculated with the Smith-Wilson model converge toward f∞,
i.e. limτ→∞ f(0, τ) = 3.75%. The term h(t, t + τ) (f∞ − f(0, t+ τ)) slightly speed up the conver-
gence. Since σ̂1 is small, we do not observe a significant difference between f̄HJM(t, t + τ) and
f̄UFR(t, t+ τ) at least for t up to 100 years. The right plot of Figure 6.3 shows the spread between
HJM and HJM-UFR expected forward rates. We see that this gap is equal to a few basis points.

Based on the previous analysis, we draw an interesting conclusion. In theory the HJM-UFR
model guarantees the convergence of future forward rates to the UFR. It is in this sense more
compliant with Solvency II than the HJM model. Nevertheless, due to current market conditions,
we do not observe a wide gap between expected forward rates computed with both models. On
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average, yield curves simulated with HJM or HJM-UFR will then be quasi similar! To our great
surprise, the main visible difference concerns the term structure of bond volatilities. Within the
1D HJM framework, this volatility is linearly proportional to the maturity of the bond. Whereas
in the 1D HJM-UFR model, the term structure of volatilities is curved and tends to be flat for
maturities from 50 up to 80 years.
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Figure 6.3: Convergence function h(t, T ), such as defined in Eq. (5.4) .

To conclude this section, we compare the distribution of simulated zero-coupon bond prices ob-
tained with the one factor HJM and HJM-UFR models and parameter estimates of Tables 4.1, 6.1.
We fit the Smith-Wilson curve to ICE swap rates in Euro on the 21/2/2020 from which we derive
the term structure of forward rates. We impose f∞ = 3.75% and work with the convergence func-
tion as in Equation (5.4). Given h(t, T ), α(t, T ) and σ(t, T ) respectively take the forms described
by Equations (5.6) and (5.7). We consider an equispaced time decomposition {t0, ..., tn} such that
the interval between two successive sampling times is ∆t = 1/252, a trading day. The following
recurrence relation

f(tk+1, T ) = f(tk, T ) + α(tk, T )∆t + σ(tk, T )(Wtk+∆t −Wtk) , (6.2)

for k = 0 to n− 1 allows us to simulate one sample path of instantaneous forward rates both the
HJM and HJM-UFR models. We run 10 000 Monte-Carlo simulations and denote the forward
rates in the jth scenario by f (j)(., .) for j = 1 to 10 000. Let us recall that the zero coupon bond
price of maturity T at time t is such that P (t, T ) = exp

(
−
∫ T
t
f(t, s)ds

)
. Discretizing this integral

on the tenor axis with m + 1 ∆T -equispaced points, T0 = t < T1 < ... < Tk−1 < Tm = T , leads to
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the following approximation:

P (j)(t, T ) ≈ exp

(
−

m∑
i=0

f (j)(t, Ti)∆T

)
, (6.3)

for j = 1, ..., 10 000. We set m = 100 and consider bonds with maturities of 20, 30 and 40 years.
Tables 6.2, 6.3 and 6.4 report the average and empirical percentiles of their prices after 1 and 30
days, 1, 5, 10 and 15 years. We also show the 99% relative values at risk (noted “99% Rel. VaR”).
If P̄ (t, T ) and P1%(t, T ) are respectively the average and 1% percentile of simulated bond prices,
this relative VaR is calculated as

(
P̄ (t, T )− P1%(t, T )

)
/P̄ (t, T ). For the 20 and 30 years bonds,

the relative VaR are comparable at short term. At longer term (above 1 year), the UFR model
leads to a higher VaR than the HJM. This difference raises up to 1.37% for the 30 years bond at
t = 15y. In this sense, the HJM UFR is more conservative than the HJM model. The flattening of
bond volatilities at long term only affects the 40 years bond for which the VaR computed with the
HJM UFR model is smaller than the one obtained with the HJM framework, whatever the time
horizon of the VaR.

T = 20y, HJM UFR t = 1d t = 30d t = 1y t = 5y t = 10y t = 15y

P̄ (t, T ) 0.9604 0.9598 0.9561 0.9450 0.9486 0.9725
P1%(t, T ) 0.9594 0.9544 0.9404 0.9150 0.9170 0.9500
P5%(t, T ) 0.9597 0.9559 0.9451 0.9238 0.9266 0.9566
99% Rel. VaR 0.10% 0.57% 1.65% 3.17% 3.33% 2.32%
T = 20y, HJM t = 1d t = 30d t = 1y t = 5y t = 10y t = 15y

P̄ (t, T ) 0.9604 0.9598 0.9561 0.9451 0.9485 0.9726
P1%(t, T ) 0.9594 0.9542 0.9407 0.9188 0.9227 0.9571
P5%(t, T ) 0.9597 0.9559 0.9454 0.9264 0.9308 0.9614
99% Rel. VaR 0.11% 0.59% 1.61% 2.79% 2.73% 1.59%

Table 6.2: Percentiles of a 20 years bond price with the HJM-UFR and HJM frameworks
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T = 30y, HJM UFR t = 1d t = 30d t = 1y t = 5y t = 10y t = 15y

P̄ (t, T ) 0.9375 0.9369 0.9331 0.9228 0.9256 0.9484
P1%(t, T ) 0.936 0.9284 0.9092 0.8749 0.8662 0.8896
P5%(t, T ) 0.9364 0.9309 0.9159 0.888 0.8833 0.9066
99% Rel. VaR 0.17% 0.91% 2.56% 5.19% 6.41% 6.20%
T = 30y, HJM t = 1d t = 30d t = 1y t = 5y t = 10y t = 15y

P̄ (t, T ) 0.9375 0.9369 0.9331 0.9224 0.9256 0.9489
P1%(t, T ) 0.936 0.9287 0.9108 0.8805 0.8769 0.903
P5%(t, T ) 0.9365 0.931 0.9173 0.8919 0.8906 0.9161
99% Rel. VaR 0.16% 0.87% 2.39% 4.54% 5.27% 4.83%

Table 6.3: Percentiles of a 30 years bond price with the HJM-UFR and HJM frameworks

T = 40y, HJM UFR t = 1d t = 30d t = 1y t = 5y t = 10y t = 15y

P̄ (t, T ) 0.7305 0.7301 0.7272 0.719 0.7212 0.739
P1%(t, T ) 0.7291 0.7224 0.7056 0.6762 0.6702 0.6849
P5%(t, T ) 0.7296 0.7249 0.7123 0.6885 0.6842 0.7
99% Rel. VaR 0.19% 1.05% 2.98% 5.95% 7.07% 7.33%
T = 40y, HJM t = 1d t = 30d t = 1y t = 5y t = 10y t = 15y

P̄ (t, T ) 0.7305 0.7302 0.7273 0.7187 0.7211 0.7391
P1%(t, T ) 0.729 0.7217 0.703 0.672 0.6631 0.6783
P5%(t, T ) 0.7294 0.7241 0.7099 0.6851 0.6799 0.6959
99% Rel. VaR 0.21% 1.16% 3.34% 6.50% 8.04% 8.23%

Table 6.4: Percentiles of a 40 years bond price within the HJM-UFR and HJM frameworks

7 A multi-factor extension

We assume here that forward rates are influenced by p risk-factors. We denote byW t = (W 1
t , ...,W

p
t ),

a p-vector of Brownian motions. We consider a p-vector h(t, T ) = (h1(t, T ), ..., hp(t, T )) of func-
tions hk(t, T ) : R2,+ → [0, 1] that are continuous and increasing with respect to t and T . We
also impose that hk(0, T ) = 0 and limt→∞ hk(t, T ) = 1 for k = 1, ..., p and for all T ∈ R+. The
functions hk(.) are differentiable on [0, t∞), where t∞ is the time at which forward rates reach f∞.
We denote by ω = (ω1, . . . , ωp), a p−vector of weights such that

∑p
k=1 ωk = 1. The instantaneous

forward rate is ruled by the following equation
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f(t, T ) = f(0, T ) +
(
h(t, T )>ω

)
(f∞ − f(0, T )) +

∫ t

0

σ(u, T )>dW u , (7.1)

where σ(u, T ) = (σ1(u, T ), ..., σp(u, T )) is a vector of p Fu-adapted processes. We can cast this
dynamic in the HJM framework and denote by

∫ t
0
α(u, T )du the drift of forward rates:∫ t

0

α(u, T )du =
(
h(t, T )>ω

)
(f∞ − f(0, T )) , (7.2)

=

p∑
k=1

ωk hk(t, T ) (f∞ − f(0, T )) .

Deriving this last equation allows us to infer that the integral of α(., .) with respect to the maturity
is given by ∫ T

t

α(t, s)ds =

∫ T

t

(
∂h(t, s)>

∂t
ω

)
(f∞ − f(0, s)) ds .

If we remember that S(t, T ) = −
∫ T
t
σ(t, s) ds, from Proposition 1, the market is arbitrage free if

and only if the drift of f(t, T ) is related to the volatility through the relation:∫ T

t

α(t, s)ds =
1

2
S(t, T )>S(t, T ) (7.3)

=

p∑
k=1

1

2

(∫ T

t

σk(t, s) ds

)2

.

There exist multiple (but non-trivial) solutions to this equation. Nevertheless, a natural one
consists to match each terms of sums in Equations (7.2) and (7.3):

ωk

∫ T

t

∂hk(t, s)
>

∂t
(f∞ − f(0, s)) ds =

1

2

(∫ T

t

σk(t, s) ds

)2

k = 1, ..., p .

We infer for
∫ T
t
σk(t, s) ds a similar expression to the one proposed in Proposition 1 excepted that

we have a weighting factor:∫ T

t

σk(t, s) ds = ±

√
2ωk

∫ T

t

∂hk(t, s)>

∂t
(f∞ − f(0, s)) ds k = 1, ..., p . (7.4)

Deriving this last equation with respect to T gives the following representation of the volatility:

σk(t, T ) = ±
ωk

∂hk(t,T )
∂t

(f∞ − f(0, T ))√
2ωk

∫ T
t

∂hk(t,s)>

∂t
(f∞ − f(0, s)) ds

k = 1, ..., p . (7.5)

Properties of σk(t, T ) for k = 1, ..., p are similar to those of the one factor model. The estimation of
the multi-factor model is also done in the same manner. If we denote by βk the vector of parameters
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of hk(t, T ) for k = 1, ..., p, their estimates are obtained by minimizing the spread between observed
and modeled volatilities of zero-coupon bonds:

β̂k = arg min
βk

d∑
j=1

(
−
∫ t+τj

t

σk(t, s) ds−Ψj,k

√
λk

)2

k = 1, ..., p. (7.6)

As in previous sections, Ψk is the kth eigenvector of the covariance matrix of first-order differences
of log-bond prices and λk is the kth largest eigenvalue. Let us recall that the dimension of Ψk is
noted d and therefore that k ≤ d.

To illustrate this section, we fit a bivariate HJM UFR model to ICE swap rates in Euro from
the 1/8/2014 to the 21/2/2020. We work with the convergence function defined in Equation (5.4).
The weights ω = (ω1, ω2) are set a priori and influences the convergence of forward rates to f∞
since by construction

EQ (f(t, t+ τ)) = f∞ +

p∑
k=1

ωk hk(t, T ) (f∞ − f(0, T )) .

There is no criterion to optimize ω but it seems relevant to link ωk to the fraction of the total
variance explained by the kth principal component, i.e. :

ωk =
λk∑p
k=1 λk

, k = 1, ..., p . (7.7)

Nevertheless, as underlined in Section 4, the first and second principal components respectively
explain 99.12% and 0.77% of the total variance of Y for our data set. Using the rule (7.7) leads
to a quasi null second weight. We instead choose ω1 = 0.7 and ω2 = 0.3 to emphasize the impact
of these weights on the calibration.

Estimates h1(t, T ), Eq. (5.4) h2(t, T ), Eq. (5.4)

β̂0 9.3312e-05 9.1800e-06
β̂1 3.0670e-03 1.4398e-06
β̂2 0.0000 8.6285e+01

Table 7.1: Parameter estimates of a bivariate HJM UFR model for convergence functions (5.4).

Table 7.1 reports parameter estimates. Compared to the 1D model and Table 6.1, the presence
of the weight ω1 in Equation (7.5) slightly modifies the parameter estimates. Nevertheless, the
goodness of fit remains excellent as underlined by the left plot of Figure 7.1. The right plot shows
the evolution of the convergence function, h1(t, T ). It is again very similar to the function obtained
for the 1D model, excepted that the amplitude of its increase over 20 years is lower.
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If we refer to Equation (7.4), the integral
∫ T
t
σk(t, s) ds is either strictly positive or strictly negative.

Therefore, the HJM UFR model cannot explain the flip of sign observed for Ψ2. We then fit σ2(t, s)

to the first 20 positive values of Ψ2. The result of this calibration is plotted in the left plot of
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Figure 7.2. It reveals that the chosen convergence function fails to replicate the hump displayed
by Ψ2. The right plot reveals an interesting feature of h(t, T ): the best fit is here obtained with a
parabolic convergence function. Does this incapacity to explain a flip of sign in Ψk limit the field
of application of the HJM UFR model? To answer this question, we should consider other data
sets for which the percentages of the total variance explained by the second and third principal
components are higher than those of our data set. In the numerical illustration, we have seen that
the first principal component explains 99.12% of the variance and therefore a one factor model is
widely sufficient. The second component only generates 0.77% of the total variance and may then
be assimilated to a measurement noise.

8 Conclusion

This working note adapts the HJM framework in order to force the convergence of future forward
rates toward an ultimate rate (the UFR). This work is motivated by the Solvency II regulation
that recommands to use a discount curve adjusted with the Smith-Wilson model. Beyond the last
liquid point, the forward rates are forced to converge toward the UFR that is specified by the
regulator. In this work, we assume that the drift of forward rates tends to the UFR according to a
convergence function. The volatility function of forward rates, σ(t, T ), is next adapted in order to
guarantee the absence of arbitrage. We show that the constraint of convergence implies that this
volatility asymptotically vanishes.

The HJM UFR model is next estimated with a standard principal component approach. Ap-
plying this procedure to ICE swap rates allows us to draw several interesting conclusions. Firstly,
the calibration does not reveal a fast convergence of forward rates toward the UFR. This raises
the question of the realism of the assumption made by EIOPA. Secondly, the HJM and the HJM
UFR models generate on average quasi similar yield curves. Thirdly, the main difference concerns
the term structure of bond volatilities. Within the 1D HJM framework, this volatility is linearly
proportional to the maturity of the bond. Whereas in the 1D HJM-UFR model, the term structure
of volatilities is curved and tends to be flat for long term maturities.

A comparison of values at risk does not reveal a significant difference between the HJM and
HJM UFR models for bonds with maturities up to 30 years and for VaR calculation dates up to 1
year. At longer term, we even observe that the HJM UFR is more conservative than the HJM one.
The flattening of bond volatilities has an impact on the bond VaR, only for very long maturities.
For a 40 years bond, the value at risk is lower in the HJM UFR than in the HJM model, whatever
the chosen time horizon for the VaR.

In theory, the HJM UFR model admits a multi-factors extension. Nevertheless, the model is
unable to explain the flip of signs in a principal component of the covariance matrix of first order
differences of log-bond prices.
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Appendix

Maturity Swap rate
1 -0.441
2 -0.378
3 -0.363
4 -0.341
5 -0.314
7 -0.247
10 -0.115
15 0.090
20 0.203
25 0.231
30 0.218

Table 8.1: ICE swap rates in Euro on the 21/2/2020.
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