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This paper focuses on partial dependence plots which are often used when modeling with 
machine learning techniques in order to better understand the effects of the features on the 
conditional expectation of the response variable. However, these plots must be interpreted with 
caution. Indeed, they can easily lead to wrong interpretations in case the analyst is not enough 
familiar with these plots. As noticed in a previous FAQctuary, a typical situation is the case 
where a feature is important because of its interactions with others while its partial dependence 
plot is flat. In this FAQctuary, we go one step further and we consider a very simple example 
with a three-way interaction effect and we show that only looking at partial dependence plots 
for each feature and for two features may indeed lead the analyst to wrong conclusions.
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1 Introduction

Partial dependence plots are often used to determine the effect of features on the response variable
when modeling with machine learning techniques. However, these plots must be interpreted with
caution. Indeed, they can easily lead to wrong interpretations in case the analyst is not enough
familiar with these plots. As noticed in a previous FAQctuary, a typical situation is the case where
a feature is important because of its interactions with others while its partial dependence plot is
flat. In such a case, an analyst who would only base his analysis on this plot could be tempted to
conclude that the feature is not important to explain the conditional expectation of the response
while he would be wrong. In this FAQctuary, we consider a very simple example with a three-way
interaction effect and we show that only looking at partial dependence plots for each feature and
for two features may indeed lead the analyst to wrong conclusions.

2 Data simulation

We consider an example in car insurance. Four features X = (X1, X2, X3, X4) are supposed to be
available, that are

- X1 = Gender: policyholder’s gender (female or male);

- X2 = Age: policyholder’s age (integer values from 18 to 65);

- X3 = Split: whether the policyholder splits its annual premium or not (yes or no);

- X4 = Sport: whether the policyholder’s car is a sports car or not (yes or no).

The variables X1, X2, X3 and X4 are assumed to be independent and distributed as follows:

P [X1 = female] = P [X1 = male] = 0.5;

P [X2 = 18] = P [X2 = 19] = . . . = P [X2 = 65] = 1/48;

P [X3 = yes] = P [X3 = no] = 0.5;

P [X4 = yes] = P [X4 = no] = 0.5.

The values taken by a feature are thus equiprobable.
The response variable Y is supposed to be the annual number of claims. Given X = x, Y is
assumed to be Poisson distributed with expected claim frequency given by

λ(x) = 0.1×
(
1 + 0.1I{x1=male}

)
×
(
1 +

1√
x2 − 17

)
×

(
1 + I{x4=yes} ×

((
0.5I{18≤x2<35} − 0.5I{45≤x2<65}

)
×
(
0.7I{x3=yes} − 0.7I{x3=no}

)))
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×

(
1 + I{x4=no} ×

((
0.3I{25≤x2<50} − 0.3I{x2≤25 ∨ x2>50}

)
×
(
0.7I{x3=yes} − 0.7I{x3=no}

)))
,

where IA is equal to one if the random event A is realized and zero otherwise.
In this example, being a male increases the expected annual claim frequency by 10% and the
expected annual claim frequency decreases with the age of the policyholder. The feature Age
interacts with features Sport and Split. A policyholder with a sports car and who is between 18
and 35 years old, sees its premium increase (resp. decrease) by 50%×70% = 35% if the policyholder
splits (resp. does not split) its premium. A policyholder with a sports car and who is between
45 and 65 years old, sees its premium decrease (resp. increase) by 35% if the policyholder splits
(resp. does not split) its premium. When considering policyholders with no sports cars, we notice
that the effect of Age and Split on the expected annual claim frequency is different. For people
aged from 25 to 50 years old, the premium increases (resp. decreases) by 30%× 70% = 21% when
the policyholder splits (resp. does not split) its premium. For policyholders with another age, the
premium decreases (resp. increases) by 21% when the policyholder splits (resp. does not split) its
premium.
In this example, the true model λ(x) is known and we can simulate realizations of the random
vector (Y,X). Specifically, we generate n = 500 000 independent realizations of (Y,X), that is,
we consider a learning set made of 500 000 observations (y1,x1), (y2,x2), . . . , (y500 000,x500 000). An
observation represents a policy that has been observed during a whole year.
In Table 2.1, we provide the ten first observations of the learning set. While the nine first policies
made no claim over the past year, the tenth policyholder, who is a 49 years old man without a
sports car and splitting his premium, experienced one claim.

Y X1 (Gender) X2 (Age) X3 (Split) X4 (Sport)
1 0 male 27 no yes
2 0 female 23 no no
3 0 male 23 no yes
4 0 female 49 yes no
5 0 male 43 no no
6 0 female 65 yes yes
7 0 female 21 no yes
8 0 female 55 no yes
9 0 female 32 no yes
10 1 male 49 yes no

Table 2.1: Ten first observations of the simulated dataset.

In this simulated dataset, the proportion of males is approximately 50%, so are the proportions of
sports cars and policyholders splitting their premiums. For each age 18,19,...,65, there are between
10 199 and 10 614 policyholders.
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3 Random forests

Based on the simulated dataset composed of 500 000 observations described above, we want to
model the expected annual claim frequency using all the features available. In that goal, we fit a
random forest.
A random forest depends on several parameters that need to be fine-tuned. Among these param-
eters, we can quote

- The number of trees T composing the random forest;

- The size of the trees s, here controlled by the minimum number of observations required in
each terminal node;

- The number of features m that are selected at random as candidates for splitting at each
node.

In order to fine-tune the random forest, we split the dataset into a training set (80% of the
observations) and a validation set (20% of the observations). The training set is used to build the
random forest while the validation set aims to fine-tune its parameters. After having conducted
an extensive analysis, we found that the following parameters T = 50, s = 5000 and m = 3 were
relevant in this context. For instance, Figure 3.1 displays the out-of-bag error with respect to the
number of trees. One can see that the out-of-bag error stabilizes from approximately 50 trees.
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Figure 3.1: Out-of-bag error with respect to the number of trees.

Figure 3.2 depicts the partial dependence plots for each of the four features considered in this
example. These plots aim to capture the marginal effects of the features on the predicted outcome
[Friedman]. Figure 3.2 shows that there is a noticeable difference between males and females.
The expected annual claim frequency decreases with the age of the policyholder. There seems to
be almost no difference between policyholders who split their premium and the ones who do not,
and between policyholders who have sports cars and the ones who do not. Therefore, features X3
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and X4 may seem not to be important to predict the number of claims. However, we know that
these two features are actually important to explain the expected annual claim frequency.
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Figure 3.2: Partial dependence plots.

Henceforth, we make a focus on feature X4. Regarding the partial dependence plots, there seems
to be no difference in the expected annual claim frequency between drivers who own a sports car
and the ones who do not. Nevertheless X4 could interact with another feature, so that its impact
on the expected annual claim frequency could be hided. We need to look at conditioned partial
dependence plots to reveal interaction effects. Figure 3.3 shows the partial dependence plot of X4,
conditioned on X1. For both male and female drivers, there is no difference between policyholders
who own a sports car and the ones who do not. Hence there is no interaction between X1 and
X4. Figure 3.4 shows the partial dependence plot for X2 conditioned on feature X4. The effect
of the age of the policyholder is similar for policyholders who drive with a sports car and who
do not. This indicates that there is no interaction between X2 and X4. Figure 3.5 displays the
partial dependence plot for X4 conditioned on X3. For both policyholders who split their premium
and who do not, the expected annual claim frequency is not impacted by the variable Sport.
Hence there is no interaction between X3 and X4. From these graphs, we conclude that X4 is not
interacting with any other feature.
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Figure 3.3: Partial dependence plot for X4 (Sport): X1 = male (left) and X1 = female (right).
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Figure 3.4: Partial dependence plot for X2 (Age): X4 (Sport) = yes (left) and X4 (Sport) = no

(right).
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Figure 3.5: Partial dependence plot for X4 (Sport): X3 (Split) = yes (left) and X3 (Split) = no

(right).

From the discussed graphs, we would conclude that X4 is not an important feature to predict the
expected annual claim frequency. But there are also other tools available to consider the effect
and importance of the different features. Figure 3.6 depicts the variable importances of the four
features. The measure is computed from permuting out-of-bag observations [rfCount]. Age (X2)
is the most important feature according to this graph, the effect of the age was also clearly visible
on the partial dependence plot. The second one is Split (X3). Adding X3 leads to a significant
improvement. This effect is not so clear on the partial dependence plot, there it seems that the
expected annual claim frequency is almost the same for persons who split and who do not split
their premium. The third one is Sport (X4), adding this feature also leads to an improvement
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which was not noticeable on Figure 3.2. There was also no interaction effect visible between X4

and any other feature on the conditioned partial dependence plots. The least important one is
Gender (X1). The effect of this feature was visible on the partial dependence plot, since it was
only added as a marginal effect. Hence X1 has an impact on the expected annual claim frequency.
Since it is the least important feature according to Figure 3.6, all features are important here to
estimate the expected annual claim frequency.
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Figure 3.6: Variable importance.

We have seen that X4 is an important feature. However, we did not highlight marginal effects
nor two-way interaction effects. Let us then check whether X4 interacts with two other features
at the same time. Again, conditioned partial dependence plots are used. Figure 3.7 shows the
partial dependence plot for X2 conditioned on X3 and X4. All the subfigures depict different
trends. Hence, the age of the policyholder has a different impact on the expected annual claim
frequency for the 4 subclasses, meaning that there is a three-way interaction between X2, X3 and
X4. Therefore, we can now understand the reason why X4 is actually an important feature to
predict the expected annual claim frequency.
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Figure 3.7: Partial dependence plot for X2 (Age), accordingly to if the policyholder splits premium
(right) or not (left) and has a sports car (top) or not (bottom).
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Figure 3.7: Partial dependence plot for X2 (Age), accordingly to if the policyholder splits premium
(right) or not (left) and has a sports car (top) or not (bottom).

4 Conclusion

We need to be careful with the interpretation of partial dependence plots. Conditioned partial
dependence plots should also be used to reveal interaction effects. However, because variables do
not always interact with just one other variable, checking all these potential interactions is not an
easy task to achieve in practice. That is why these plots must be used in conjunction with other
indicators such as the variable importances. To conclude, a feature Xj with flat partial dependence
plots up to a certain level may still be important!
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5 About the serie and the authors...

5.1 The FAQctuary’s

The FAQctuary’s are a series of educational papers dedicated to the insurance sector. Each issue
addresses a specific actuarial topic, expressed as a question asked by market players. FAQctuary’s
are published by members of the Detralytics team and written in a clear and accessible language.
The team combines academic expertise and business knowledge. Detralytics was founded to sup-
port companies in the advancement of actuarial science and the solving of the profession’s future
challenges. It is within the scope of this mission that we make our work available through our
Detra Notes and FAQctuary’s series.
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