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Abstract

Pay-How-You-Drive (PHYD) or Usage-Based (UB) systems for automobile insurance pro-
vide actuaries with behavioural risk factors, such as the time of the day, average speeds and
driving habits. These data are collected while the contract is in force thanks to telematic
devices installed in the vehicle. They thus fall in the category of a posteriori information
that becomes available after contract initiation. For this reason, they must be included in
the actuarial pricing by means of credibility updating mechanisms instead of being included
in the score as ordinary a priori observable features. We propose the use of multivariate
mixed models to describe the joint dynamics of telematics data and claim frequencies. Fu-
ture premiums, incorporating past experience can then be determined using the predictive
distribution of claim characteristics given past history. This approach allows the actuary
to deal with the variety of situations encountered in insurance practice, ranging from new
drivers without telematics record to contracts with different seniority and drivers using their
vehicle to different extent, generating varied volumes of telematics data.

Keywords: Risk classification, premium calculation, driving behavior, internet of things,
count data models.



1 Introduction

The classical approach to motor insurance pricing can be summarized as follows (see Denuit
et al. 2007, for an extensive presentation). The claim frequency is often the main target
in actuarial pricing, both from an “a priori” perspective (supervised learning model includ-
ing policyholder’s characteristics as well as information about his or her vehicle and about
the type of coverage selected, among others) and from an “a posteriori” perspective based
on credibility models (mixed models linking past to future claims, inducing serial depen-
dence with the help of random effects accounting for unexplained heterogeneity), sometimes
simplified into a bonus-malus scale for commercial purposes.

Technological advances have now supplemented these classical risk factors with new ones,
reflecting the policyholder’s actual behaviour behind the wheel. Telematics is a branch of
information technology that transmits data over long distances. Examples of telematics data
include the global position system (GPS) data and the in-vehicle sensor data. The main data
source for the aforementioned parameters are the automotive diagnostic systems (or OBD,
for On-Board Diagnostics), installed in the vehicle and/or the smart phone held by drivers.
We refer the reader to Boucher et al. (2013) and Tselentis et al. (2017) for reviews of current
practices and emerging challenges in UB motor insurance pricing.

Telematics insurance data offer the opportunity to base actuarial pricing on policyholder’s
behaviour. With Pay-How-You-Drive (PHYD) or Usage-Based (UB) motor insurance, pre-
mium amounts are based on the total distance traveled, the type of road, the time of the day,
average speeds and other driving habits. Thus, premiums are based directly on driver’s be-
haviour. Several insurance companies have launched pilot projects to market new products
with such innovative premiums, especially towards young, inexperienced drivers.

UB actuarial pricing ties the amount of insurance premium to the risk level associated
with the actual driving behaviour of the policyholder. For instance, if increased mileage
and speeding are associated with larger expected claim frequencies then they result in a
higher insurance premium. This system of variable premiums offers an alternative to the
current system of fixed insurance premiums exclusively based on proxies for risk such as
age and gender, rather than on the actual driving behaviour of policyholders. UB pricing
can integrate a multitude of risk factors, including distance travelled (annual mileage) and
driving style (speeding or non-fluent driving i.e. frequent acceleration and deceleration, for
instance), as well as other factors (e.g. time of driving).

Contrarily to standard risk factors, such as age, gender or place of residence, telematics
data evolve over time in parallel to claim experience, progressively revealing the actual
behaviour of the policyholder behind the wheel. The information contained in past telematics
data differs between individuals. For newly licensed drivers, no record is available. For those
observed over the past, telematics data are available for the time they were subject to the UB
system which may vary among policyholders. Moreover, the reliability of the information
is also heterogeneous. Indeed, telematics data are recorded while the policyholders are
driving, and some of them regularly use their car (providing a rich information about their
driving habits) whereas other ones use their car to a much lesser extent (resulting in limited
volume of telematics data). In order to get the multivariate dynamics across insurance
periods, past telematics data should not be included in the score like ordinary risk factors
but must preferably be modelled jointly with claim experience. This is exactly the purpose



of credibility models (also called mixed models, in statistics), except that here they apply
to a random vector joining telematics data and claim experience. The approach proposed in
this paper provides the actuary with a powerful alternative to the inclusion of behavioural
traits as additional features in supervised learning (e.g. Baecke and Bocca, 2017, Ayuso et
al., 2018, Verbelen et al., 2018, Jin et al., 2018) or the unsupervised classification of driving
styles into a few categories that can then supplement traditional risk factors in supervised
learning (e.g. Weidner et al., 2016, 2017, Wiithrich, 2017, Gao et al., 2018).

The approach proposed in this paper is illustrated by means of a real driving data recorded
by GPS over three calendar years. These data relate to the portfolio of a Spanish insurance
company offering UB motor insurance to young drivers. The information available is a panel
that describes yearly claim numbers and the driving patterns for each driver. The driver’s
habits are summarized into three signals recorded thanks to telemetry: in addition to the
number of kilometres driven in each year, the insurer collects information on the number
of kilometres driven at night, the number of kilometres driven in an urban area, and the
number of kilometres driven at excess speed. Annual mileage is considered as an exposure to
risk and as such enters the multivariate models as an offset. The signals are treated as entire
numbers, by rounding excess speed, nighttime driving and urban driving in natural units
and a multivariate mixed Poisson model is used to describe their joint dynamics, together
with yearly claim counts.

The remainder of this paper is organized as follows. Section 2 describes multivariate
credibility models for random vectors joining signals and claim counts. This approach is
applied to a real data set in Section 4, and the results are compared with those obtained
according to the classical actuarial approach. Section 5 discusses the results and briefly
concludes the paper.

2 Multivariate credibility model

2.1 Mixed Poisson model for annual claim frequencies

Let N;; be the number of claims reported by policyholder ¢ during the period t, t =
1,2,...,T;. Compared to classical actuarial studies dealing with annual periods, insurers
using telematics data generally work with shorter time periods, like a quarter or a month.

At the beginning of each insurance period, the actuary has at his disposal some infor-
mation about each policyholder. Resorting to standard regression (or supervised learning)
machinery, this information is integrated into the prediction of the annual expected number
of claims, or claim frequency. Specifically, define

x;; = features for policyholder 7,7 =1,...,n,
during period t, t =1,2,...,T;

d; = exposure-to-risk, distance driven in kilometres

sy = s(xi)

= score for policyholder ¢ in period t.

Then,
E[Nit| = A\it = diz exp(s;1) = exp (ln di + sit).
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Adding In d;; to the score s;; (i.e. treating this quantity as an offset) means that the insurer’s
price list is expressed per kilometre, and varies according to traditional risk features included
in the vector ;. The score s;; can be calibrated by means of any Poisson regression tech-
nique, ranging from basic generalized linear models (GLM) to sophisticated machine learning
algorithms.

A random effect is superposed to the prediction \;; to recognize the residual heterogene-
ity of the portfolio. We refer to Denuit et al. (2007) for more details about this classical
construction. In this paper, we assume that the residual effect of all unknown characteristics
relating to policyholder i is represented by a random variable ©;. The annual numbers of
claims N;q, Njo, N;3, ... are then assumed to be independent given ©;. The latent unobserv-
able ©; characterizes the correlation structure of the claim counts N; for each policyholder
1. Specifically, the model is based on the following assumptions:

A1l given ©; = 6, the random variables N;, t = 1,2, ..., are independent and conform to the
Poisson distribution with mean \;6, which is henceforth denoted as N;; ~ Poi(\i0),
ie.

T;
P[Ni = ki,... Ni, = k,|©; = 0] = [][PINi = ki|©; = 0]
t=1
T.
. pILE
= H (exp(—)\,-té)< 6) ) :
iy k!

A2 at the portfolio level, the sequences (0;, N;1, N;a,...) are assumed to be independent.
Moreover, the ©,’s are non-negative random variables with unit mean: E[©;] = 1 for
all 7, which means that the a priori ratemaking is correct on average as

E[Ni] = E[E[Ny|©:]] = E[X\i©:] = .

Mixed models generally assume that the random effects ©; obey the LogNormal distri-
bution, which amounts to using a Poisson-LogNormal model for claim counts. This means
that Normally distributed terms are added on the score scale (when the canonical log link
function is used in the Poisson regression model, as assumed here). Formally, ©; = exp(W;)
where W; are independent and Normally distributed.

If longer panels are available then the static random effects ©; can be replaced with
dynamic ones 0,1, ©;9, . .. which discount past observations according to their seniority. This
is easily done by replacing W,; with a random sequence W;;, W, ... obeying a Gaussian
process whose covariance structure accounts for the memory effect (AR1, for instance).

2.2 Behavioural variable, or signal

In order to predict the number of claims Ny filed by policyholder i during period ¢, the
insurer has a signal S;; at its disposal about the policyholder’s behaviour behind the wheel
during the same period. This unique signal summarizes all the information collected by
means of telematic devices installed in the vehicle. For commercial purposes, it may be



preferable to use a unique signal as premium updating formulas are more compact and
easier to understand (in the next section, several signals will be used simultaneously).

To refine risk evaluation, we now combine past claims experience with the available signal.
Hence, each contract is represented by the sequence

(@i7 Fi7 Nih S’ila Ni2> Si27 Nii’n Si?n H )
where

©;  accounts for hidden information influencing claim frequencies N;;

I reflects the quality of driving revealed by the observed signal S;.

It is important to realize here that signals are also influenced by traditional risk factors
included in «;; so that we need to account for this effect in model design. Here is a possible
model specification in case of a Gaussian signal S;; (notice that even if the initial signal does
not obey the Gaussian distribution, it can easily be transformed to meet approximately this
condition): we supplement assumptions A1-A3 stated in Section 2.1 with

A4 Given O;, the counts Njj, Njs, ... are independent and independent of I';, Si1, Si, . . ..

A5 Given I, the signals S;1, Sjo, ... are independent and independent of ©;, N;1, N, . . .,
and
Sit = Vi + I + &

where v is the signal score based on classical features x;;, I'; is Normally distributed
and represents the additional information contained in the signal about claim frequen-
cies, corrected for the effect of the features x;; whereas the Normally distributed error
terms &; represent the noise comprised in the observed signal S; which do not re-
veal anything about claim counts. We also make the following assumptions about the
dependence structure of these random variables

- The random variables I';, &1, &, . . . are mutually independent.

- The random variables &;1, &, . .. are independent from (0, N1, Nio, N3, .. .).

A6 Given ©; and I, all the observable random variables N;i, S;1, N2, S, ... are indepen-
dent.

From assumptions A4-A6, we see that only the I'; component involved in the signal
Si¢ is relevant to predict claim frequencies: we assume that the pair (0;,T;) is Normally
distributed, and its covariance drives the corrections brought by signals in the evaluation of
future expected number of claims.

Continuous signals are certainly appealing as many embarked devices produce real mea-
sures. Another approach consists in recording a number of events, or to round a continuous
signal in multiples of a natural unit. This makes the mechanism more transparent, at the
cost of a negligible loss of accuracy.

If the signal counts a number of events then A4-A6 above are replaced with

A4 Given 0;, the claim counts N;i, N;o, ... are independent and independent of I';, S;1, Sio, . . ..
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A5 Given I';, the signal counts S;1, Sjo, . . . are independent and independent of ©;, N;;, N, . . .,
and
Sit ~ Poi (dzt eXp(l/Z't + Fz))

where v is the signal score based on classical features x; and I'; is Normally dis-
tributed and represents the additional information contained in the signal about claim
frequencies. The noise present in the observed signal S;; is now represented by the
Poisson error structure.

A6 Given ©; and I';, all the observable random variables N;i, S;1, Njo2, S;o, ... are indepen-
dent.

2.3 Multiple signals

In case several signals Sﬂf ), j=1,2,..., are available, the insurer may either combine them
into a single one and proceed as explained above. A natural approach would consist in using
a linear combination of the signals for instance, and to work with the unique, composite
signal > QG Sl(tj ) for appropriate weights «; (determined so to maximize the correlation with
the observed claim counts). Another possibility is to extend the model from the preceding
section to the multivariate case by assuming a specific dynamics for each signal as explained
next.

In case of multivariate Normally-distributed signals, we supplement assumptions A1-A3

with

A4 Given 0, claim counts V;1, Vs, . . . are independent and independent of I'; G) Sz(f), SY) 5y

for j=1,2,....

A5 Given F , the signals S SZ2 , ... are independent and independent of ©;, N;i, N;o, . . .,
and admlt the representation

Sz(tj _Vzt +F +gzt

where 1/(] ) is the score for the 7th signal based on classical features x;;, ng ) is Normally
distributed and represents the additional information contained in the jth signal about
claim frequencies, corrected for the effect of the features a;; whereas the Normally
distributed error terms 8“5] represent the noise comprised in the observed signal which
do not reveal anything about claim counts.

We also make the following assumptions about the dependence structure of these ran-
dom variables:

The random variables 'Y 51(1'), El(zj ), ... are mutually independent.

7 Y

The random variables &Y 1 ,81(2] ), ..., J=1,2,..., are mutually independent.

- The random variables £Y i ,5(2]), ... are independent from (©;, N;1, Njo, Ni3, .. .).

2

The random vector (FE ), r ), ...) is multivariate Normally distributed.
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A6 Given ©; and ng), all the observable random variables N;;, Si(ll), Sﬁ), ooy Nig, 52(21), 5522), e
are independent.

We also assume that the random vector (O, Fgl), FZ@), ...) is Normally distributed. Its
covariance structure drives the corrections induced by the signals on future expected claim
counts. We acknowledge here that the multivariate Normal assumption may appear to be
restrictive in some applications because it constrains the dependence structure (prohibiting
tail dependence, for instance). Other multivariate distributions, such as Elliptical ones can
be useful to model the dependency of the signals, and a copula construction can be employed
to this end.

If the signals consist in counts of different events then assumptions A1-A3 are supple-
mented with
j)’ S(j) S(j)

A4 Given 0;, claim counts NV;1, Njs, . .. are independent and independent of FE AR S

for j=1,2,....

A5 Given FZ@, the signal counts Si(f), Sg), ... are independent and independent of ©;, N;1, N;a, . . .,
and _ _ ‘
Sftj) ~ Poi(dy exp(yftj) + FEJ)))
where l/i(g) is the score for the jth signal based on classical features x; and ng ) s
Normally distributed and represents the additional information contained in the jth
signal about claim frequencies, corrected for the effect of the features x;;.

A6 Given ©; and ng), all the observable random variables N1, Si(ll), SZ-(12), ..y Nig, SZ-(Ql), Sg), -
are independent.

Of course, the insurer could use a blend of continuous and integer signals so that many
variants to the models proposed above can be envisaged.

Maximum likelihood estimation of generalized linear mixed models (GLMM) for panel
data is implemented in R, where both fixed effects and random effects are specified via the
model. The results presented in the case study were obtained with the 1me4 package.

3 Case study

3.1 Presentation of the data set

Our research is based on real driving data recorded by GPS, collected by a Spanish insurance
company within the framework of a new form of insurance cover. Under such policies,
motor insurance premiums are determined by taking into account not only the traditional
risk factors but also the number of kilometres driven in a given period of time as well as
information on the number of kilometers driven at night, the number of kilometres driven
in an urban area, and the number of kilometres driven at excess speed. The information
available is a panel that describes yearly records on the number of claims and the driving
patterns for each driver measured thanks to telemetry.

Excess speed, night-time driving and urban driving are considered to be signals of the
type of driving habits or skills. We treat these signals as entire numbers, by rounding excess



speed, night-time driving and urban driving in natural units of 500 kilometres. Specifically,
the three signals at our disposal are as follows:

Si(tl) = distance travelled in the night (in 500 Kms)
Sl(f ) — distance driven above the speed limit (in 500 Kms)

Sz(f ) = distance travelled in urban zones (in 500 Kms).

The joint dynam1cs of the number of claims Ny filed by policyholder i during period ¢ and
the three signals S, tj , J =1,2,3, will be exploited to predict the future number of claims.

Notice that these are not compositional data in the sense of Verbelen et al. (2018)
because as opposed to raw counts, they model percent exposure and they have to cope with
the restriction that percentages need to add up to 100% at the policy holder level. Data on
the total distance driven per year (in kilometres) is considered as an exposure to risk and as
such enters our models as an offset. To avoid large dispersion, distance driven is expressed
in hundreds of kilometres.

Let us briefly comment on the choice of these three signals. Night-time driving is usually
associated to more accidents than day-time, especially at young ages (see, for instance,
Williams, 1985), and the first signal captures this effect. As pointed out by Bolderdijk et
al. (2011), vehicle speed is commonly considered as the major determinant of crash risk
for young adults. Specifically, these authors demonstrated that reducing the amount of
time spent above the speed limit, holds the potential of dramatically reducing accidents.
This is exactly the information captured by the second signal, time being here measured by
the actual distance driven above the speed limits (integrating the total distance travelled
by means of offset). Notice that the signal excess speed records the number of kilometres
travelled at a speed in excess of the posted limit. However we do not have enough information
to include the amount of excess, so we cannot distinguish between a driver who drives 10%
faster or 20% than the posted limit. Finally, we note that urban areas are often congested
and crash risk is higher there than in sub-urban or rural zones, because of heavy traffic. The
third signal records the distance travelled in the accident-prone urban areas.

3.2 Descriptive statistics

The sample is made up of 2,494 insured drivers followed over the three calendar years 2009-
2011. The observation period ends on December 31, 2011. The mean age of all drivers in
the sample in 2009 is 25.17 years (standard deviation 2.44). In the participating insurance
company, the policies that involve collecting telematics information are only offered to young
drivers (the maximum age in the sample being 30 years). Our sample comprised 51.60% of
male drivers and 48.40% of female drivers.

In Table 3.1 we present descriptive statistics for telematics data observed in the sample
for each year. Many contracts were discontinued because customers preferred to chose other
forms of insurance payments in 2011 and this is the reason why distance driven dropped
dramatically the last year. However, since we have distance driven as an offset in our model,
we predict the expected number of claims per mileage, and therefore this is automatically
corrected in the analysis.



year: 2009 year: 2010 year: 2011
Total distance
min 1.06 80.61 17.54
mean 14,062.39 13,475.16 7,170.96
median 12,777.59 12,070.94 6,404.03
(IQR) (8,342.37, 18,590.10)  (7,934.84, 17,662.90) (4,064.64, 9,375.69)
max 53,412.06 56,360.86 36,101.56
Km night
min 0.00 0.00 0.00
mean 923.24 1,011.26 527.73
median 579.00 611.00 298.00
(IQR) (235.25, 1,202.50) (242.00, 1,290.00) (112.00, 698.75)
max 10,989.00 11,494.00 6,526.00
Km speed
min 0.00 0.00 0.00
mean 1,564.76 1,547.05 560.81
median 834.50 769.00 258.50
(IQR) (343.25, 1,848.75) (324.25, 1,879.25) (106.00, 632.75)
max 18,160.00 23,500.00 11,836.00
Km urban
min 1.00 45.00 0.00
mean 3,122.52 2,871.50 1,483.40
median 2,803.00 2,590.50 1,345.50
(IQR) (1,903.00, 3,947.25) (1,755.00, 3,637.00) (875.00, 1,923.00)
max 15,519.00 14,732.00 6,462.00

Table 3.1: Sample statistics for raw telematic information by year (n = 2,494).

Our yearly responses are the number of claims, and then the number of count units
of excess speed, night-time driving and urban driving (rounded in 500s kilometres). Our
measure of exposure-to-risk is the distance driven measured as a continuous variable in 100s
kilometres. Figure 3.1 shows a four histogram presentation of the raw telematics data in
2009.

3.3 Association between signals and claim counts

We focus specifically on the three signals Sl(f ) because we expect a clear association between
claims and excess speed, night driving and urban driving. We treat total driving distance as
a total exposure offset. There is an extensive literature on how all these factors are associated
to claiming. Ayuso et al. (2016, 2018) and showed that information on speed excess, night-
time driving and urban driving improves the prediction of the number of claims, compared to
classical models not using telematics information. Guillen et al. (2018) provide an extended
overview on how accumulated distance driven shows evidence that drivers improve their
skills, a phenomenon that is known as the “learning effect”.

All this previous knowledge is the reason why we focus specifically on variables that reflect
the driving habits, such as excess speed, night driving and urban driving, and for which we
expect a clear association with the number claims as well as distance driven. Let us now
investigate the strength of this association on our data set. Figure 3.2 shows a correlation
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Figure 3.2: Correlation matrix of telematic information recorded in 2009, 2010 and 2011.

between the distance and the three raw indicators (speed, night-time, urban) in 2009, 2010
and 2011. Just by illustration in Figure 3.3 we also show the correlation between distance
driven in the three observed years. As expected, distance driven correlates with the signals
(Figure 3.2) and between consecutive years (Figure 3.3). Notice that no correction has been
made for standard risk factors at this stage so that the correlation may only be apparent,
being generated by the confounding effects of the standard risk factors comprised in x;.

The association between signals and claim counts can also be assessed by fitting a GAM
model for the number of claims with the signals treated as explanatory variables. Table 3.2
shows that a GAM model for the number of claims where night, speed and urban driving
are explanatory variables and measured as discrete counts in units of 500s kilometres. We
can see there is a significant effect of these three signals on the expected frequency of claims.

Table 3.3 presents the counts information for the three years and the four counts once
the signals of speed, night-time and urban are transformed in discrete counts in units of 500s
kilometers. We can see there that the majority of claims counts as well as night-time and
speed signals concentrate in low-frequency cells, whereas the counts of the signal urban is
located in a higher frequency level. The information in Table 3.3 indicates that 2,004 drivers
did not claim any accident in 2009 (2,038 and 2,091 in 2010 and 2011, respectively). In 2009,
one policyholder claimed as much as 6 accidents, while the maximum number of claims was
4 in 2010 and 2011. A few policy holders recorded high levels of speed limit excess in 2009
and even a bit more in 2010.

3.4 Fitted models

The Poisson-LogNormal model for claim counts was fitted using the glmer function of the
R package 1me4 which performs Poisson regression with random effects.

In the univariate approach (i.e. considering claim counts, or each signal, in isolation), the
random effects are included by means of the component (1|id) where id denotes the policy
identifier (allowing to track the same contract over time) entering model formula. In this
case, only past claim experience is used to update the expected number of claims in future
years. The multivariate model consider claim counts and the three signals simultaneously.
We fit the multivariate model at once following the approach proposed by Faraway (2016,
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Figure 3.3: Correlation matrix of distance driven in 2009, 2010 and 2011.

Model 1
(Intercept) —6.156***
(0.036)
men —0.006
(0.050)
EDF: s(age) 0.991*
(9.000)
EDF: s(km_nightcount500)  1.892***
(9.000)
EDF: s(km_speedcount500)  4.706***
(9.000)
EDF: s(km_urbcount500) 2.827
(9.000)
AIC 9.124.622
BIC 9,227.708
Log Likelihood -4,547.415
Num. obs. 7,482
Num. smooth terms 4

***p < 0.001, **p < 0.01, *p < 0.05

Table 3.2: GAM model for the number of claims 2009-2011.
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Table 3.3: Counts of claims and driving signals (expressed in 500s kilometres) in 2009, 2010

and 2011.
Year: 2009 Year: 2010 Year: 2011
Claims Night Speed Urban Claims Night Speed Urban Claims Night Speed Urban

0 2004 652 461 18 2038 640 473 17 2091 1131 1227 59
1 370 825 705 74 350 793 755 97 318 799 732 415
2 95 428 422 181 92 409 371 199 71 298 242 642
3 18 229 234 252 11 230 231 306 11 126 113 616
4 4 133 175 343 3 128 156 381 3 69 60 368
5 2 73 102 339 91 109 367 27 41 191
6 1 49 72 309 60 83 299 19 22 94
7 28 66 272 39 67 256 11 25 56
8 27 43 183 31 38 169 6 9 27
9 14 40 147 27 38 123 3 7 10
10 10 33 102 13 32 76 2 7
11 12 15 76 6 27 50 4 5 5
12 4 12 52 6 14 53 3 2
13 2 25 45 8 21 30 1 2 2
14 3 17 20 3 12 19 1

15 1 11 25 4 4 16

16 1 8 15 2 11 10 1

19 1 4 5 4 1 1

20 1 3 9 3

22 1 5 1 4 1

17 6 11 1 9 5

18 8 5 1 4 12

21 6 3 1 3 3

23 2 2 1 5 2

24 2 1 1 1

25 3 1 1 1

26 1 5

27 3 1

28 1 1

29 3 1 1

31 1 1 1

32 1 2

33 2 3

35 1 1

36 1

30 1

34 1

38 1

41 1

47 1
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Section 9.3). The idea is to define signal identifiers by means of a categorical feature with
three levels, S1, S2, and S3, say, treated as fixed effects and to introduce an interaction
between the signals and the other fixed effects, as well as hierarchical random effects for
signals and for the insured within signal.

To ensure numerical stability of the optimization algorithms, policyholder’s age has been
rescaled (divided by 100). Gender is coded as 1 for male drivers and as 0 for female drivers.
Also, different units have been tested for the three signals (in 100 and 1,000 kilometers,
without affecting the results).

Table 3.4 presents the results of the univariate and the multivariate counts models (esti-
mated with the three-year panel 2009-2011). The difference between the univariate approach
and the multivariate approach is that the former only considers one of the signals at a time
and it completely ignores the association between them. However, the reason to introduce
a multivariate framework is that, for instance a claim in 2009 can influence the driver in
such a way that he or she drives more carefully in 2010 in terms of excess speed and even in
the total distance. This phenomenon had been noted before (see Guillen and Pérez-Marin,
2018) but it had not been studied in the way it is done here

In the univariate modelling, the four responses Ny, Sn , Sz(f ), and S are considered

to be mutually independent (but serial dependence for fixed i is taken 1nto account in all

four cases): precisely, given independent, centred, Normally-distributed random variables
oL TML @4 @)L

, ;777 the responses are Poisson distributed with respective means

InE[Ny|0;] = In(dy) — 4.93 — 5.95age; — 0.091[gender; = male] 4 In ©;
mE[SPITW+] = In(dy) — 4.32 — 1.33age; + 0.381[gender; = male] + V"
mE[SP T4 = In(dy) — 3.27 — 4.27age; + 0.22I[gender; = male] 4+ ['**
In E[S( )|F(3) L] = In(d;) — 2.30 — 3.29age; + 0.03[[gender; = male] + Ff”’l

The prediction for the future expected number of claims is based on claim dynamics only,
and integrates individual past claims frequencies. These predictions are obtained using large-
sample results such as formula (3.21) on page 151 of Wood (2017) giving the a posteriori,
or predictive distribution of the estimated regression coefficients and random effects (used
in the predict function of glmer).

The main conclusion is that, in the univariate models and even when we control for the
driving behaviour signals, age has an overall effect that is negative, meaning that the older
the driver the less claims are expected. Here we chose a linear effect because the interval of
ages is small for this sample of young drivers and we could not find a non-linear association.
We also tried interactions between age and gender, but again we could not find significant
cross-effects.

The joint dynamics of the number of clalms N, filed by policyholder ¢ during period
t and the three signals St ; Sz(f ) and Szt is as follows. In the multivariate modelling,
the correlation structure and the serial dependence are both taken into account for the four
responses N, Szt , S @) and S . precisely, given centred, multivariate Normally-distributed

it
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Multivariate

Univariate Models

Model Night Speed Urban Claims
(Intercept) —4.540"** —4.318*  —3.266™*  —2.304™*  —4.932***
(0.273) (0.145) (0.159) (0.095) (0.319)
Night 0.179
(0.310)
Speed 0.995**
(0.305)
Urban 2.231***
(0.294)
Age —6.813*** —1.330* —4.2747%  —=3.294**  —5.950***
(1.054) (0.550) (0.610) (0.362) (1.215)
Men (vs. Women) —0.094 0.379*** 0.217*** 0.032 —0.095
(0.055) (0.030) (0.036) (0.021) (0.063)
Night:age 5.587***
(1.196)
Speed:age 3.951***
(1.174)
Urban:age 3.507**
(1.135)
Night:men 0.477***
(0.063)
Speed:men 0.296***
(0.062)
Urban:men 0.124*
(0.060)
AIC 85254.002 21513.022  23097.651  31167.398  9085.767
BIC 85361.987  21540.703  23125.332  31195.079  9113.448
Log Likelihood -42614.001  -10752.511 -11544.826 -15579.699 -4538.884
Num. obs. 29,928 7,482 7,482 7,482 7,482
Num. groups: signalName:idd 9976
Var: signalName:idd (Intercept) 0.314
Num. groups: idd 2,494 2,494 2,494 2,494
Var: idd (Intercept) 0.272 0.547 0.189 0.746

w5 < 0.001, **p < 0.01, *p < 0.05

Table 3.4: Model results for panels data on claims and driving count signals, 2009-2011.



random variables @i,Fgl),FEZ),F(?’), the responses are Poisson distributed with respective

%

means

InE[N4|©;] = In(di) —4.54 — 6.81age; — 0.09I[gender; = male] + In ©;

mE[SYITM] = In(dy) + (—4.54 + 0.18) + (—6.81 + 5.59)age,
+(—0.09 + 0.48)I[gender; = male] + I'"

i

= In(d;) —4.36 — 1.22age; + 0.39I[gender; = male] + FE”

mE[SPII®) = In(dy) + (—4.54 + 0.99) + (—6.81 + 3.95)age,
+(—0.09 + 0.30)I[gender; = male] + I'*?
= In(d;) — 3.55 — 2.86age; + 0.211[gender; = male] + I'\*

i

mE[SPII®) = In(dy) + (—4.54 + 2.23) + (—6.81 + 3.51)age,
+(—0.09 + 0.12)I[gender; = male] + IT'?
= In(d;y) — 2.31 — 3.30age; + 0.031[gender; = male] + I‘Z(-?’).

Compared to the univariate approach, we see that the intercept and gender effect remain
almost unaffected in the multivariate model. The coefficient of age becomes even more
negative. The effect of age on the score scale remains negative in the multivariate model.
The prediction for the future expected number of claims is now based on both claim and
signal dynamics, and integrates individual past claims frequencies and signal values.

Table 3.5 and 3.6 present the estimated covariance matrix of individual random effects
for signal counts: Night, Speed, Urban and the number of claims. Correlations appear to be
significant between night time driving and the number of claims (positive) and also between
urban and the number of claims (negative). These results can be interpreted as follows: once
information on night driving is known and included in the prediction of the number of claims,
there are still other signals that impact positively on the number of claims, meaning that
those drivers that drive more in the night will still be more risky than the others. However,
the negative covariance in the individual random effects between urban driving and number
of claims means that once urban driving is known then the rest of characteristics induces a
lower number of claims, meaning that those drivers that drive more in urban areas are less
risky drivers than the others.

3.5 Predictive power

Table 3.7 shows the predictive performance when analysing the number of claims for the
univariate versus the multivariate method when the model is estimated for two years (2009
and 2010) and then the third year (2011) is predicted. To simplify the analysis of observed
versus predicted counts, in this performance matrix, we have aggregated all frequencies that
are equal to 1 or larger. The overall success rate for the univariate model is 77.5% (i.e.
(1866+467)/2494) and it is 79.6% (i.e. (1945+39)/2494) for the multivariate model. Note
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Night Speed Urban Claims
Night 0.064 0.002 —0.009  0.029
Speed 0.002 0.151  0.003  0.006
Urban —0.009 0.003  0.255 —0.066
Claims  0.029 0.006 —0.066  0.169

Table 3.5: Estimated covariance matrix of random effects in the multivariate model for
signals (Night, Speed, Urban) and the number of claims.

Night Speed Urban Claims
Night 1.000
Speed 0.024 1.000
Urban —0.067*  0.016  1.000
Claims  0.275**  0.035 —0.318**  1.000

***p < 0.001, **p < 0.01, *p < 0.05

Table 3.6: Pearson correlations of individual random effects in the multivariate model for
signals (Night, Speed, Urban) and the number of claims.

that the prediction is equal to 0 if the predicted number of claims is below the fixed threshold
(mean observed frequency) and it is 1, otherwise.

Figure 3.4 shows the difference between the prediction for 2011 of the univariate model
(x-axis) and the multivariate model (y-axis). We can see that the multivariate model shows
a marked difference for those insured who had an accident in 2009 and 2010 (left plot) and
for those that drive more distance (centre plot). However, there is no clear pattern between
the predictions of the number of claims for men and women under the univariate or the
multivariate approach (right plot) possibly because their driving patterns also differ in other
signals like night driving.

By looking at Figure 3.4, in general we conclude that the multivariate model predicts
less expected claims than their univariate counterpart. The dots on the left-hand side of
Figure 3.4 that are shown in blue, represent those policyholders who reported at least one
claim either in 2009 or in 2010 or both. Those drivers who had claims in 2009 and 2010

Predicted
Univariate model Multivariate model
Observed 0 1 or more 0 1 or more
0 1866 225 1945 146
1 or more 336 67 364 39

The threshold is set at the mean observed frequency

Table 3.7: Predicted versus observed number of claims for 2011 using model estimates 2009-
2010.
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distance in 2011

Figure 3.4: Comparison between the predictions in 2011 for the multivariate model (y-axis)
and the univariate model (x-axis) for the expected number of claims in 2011 using model
estimates 2009-2010.

(blue dots) have a lower expected estimated number of claims with the multivariate signal
panel Poisson model than with the univariate panel Poisson model. It seems that having
a claim is not as important in the multivariate framework, as it is in the univariate signal
study. In the multivariate model all the other signals are also considered. The central plot
shows that those policyholders located in the upper part of the cloud correspond to those
that drove higher distances, which means that the multivariate approach predicts for them
a higher number of claims than for those who drove less. The distance driven in 2011 was
used for predicting both the univariate and the multivariate estimates, we only present in
Figure 3.4 the predictions for the expected frequency of claims. We note that the positive
and significant association between distance driven and signals means that the longer the
distance travelled, the higher is the count distance in the night, in excess speed and in
urban areas. Altogether these three signals are associated with more claims, and so, the
multivariate model predicts more claims for these observations. This phenomenon is ignored
by the univariate model.

The comparison between predictions in the signals other than the number of claims is
shown in Figure 3.5. Interestingly, for the night time driving the multivariate model and
the univariate model have different predictions for men and women (see right plot), which
suggests a different attitude of both gender regarding driving in the night. This phenomenon
had already been found by other authors before.

4 Discussion

The approach proposed in this paper recognizes the a posteriori nature of telematics data
and their heterogeneity among insured drivers. The multivariate credibility model developed
in the case study captures the association between signals and claim counts, allowing the
actuary to refine risk evaluations based on past history.

Bonus-malus scales, which have now become a popular experience rating scheme in motor
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Figure 3.5: Comparison between the predictions in 2011 for the multivariate model (y-axis)
and the univariate model (x-axis) for the three signals (night, speed and urban driving) in

2011.
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insurance, have been proposed to insured drivers in the 1960s. On a voluntary basis, attract-
ing the best drivers, before becoming compulsory. We refer the reader to Lemaire (1995)
for the history of this a posteriori pricing mechanism. The UB motor insurance premium
systems could develop similarly.

Considering adverse selection in the vein of Rotschild and Stiglitz, individuals partly
reveal their underlying risk through the contract they chose, a fact that has to be taken
into account when setting an adequate tariff structure. In the presence of unobservable
heterogeneity, low risk insurance applicants have interest to signal their quality, by selecting
UB insurance cover for instance. As pointed out by Tselentis et al. (2017), a gradual global
transition towards UB insurance can therefore be envisaged. Low-risk drivers (low-mileage,
less risky drivers etc.) will first opt out of traditional insurance in favour of insurance
policies with UB premium calculation. Consequently, behavioural aspects of driving are
likely to be incorporated in insurance models in order to contribute towards current trends
of personalized vehicle insurance.

As claims remain rare events, the standard credibility models appear to be relatively
inefficient in personal insurance lines. They are even sometimes perceived as unfair by insured
drivers. On the contrary, behavioural characteristics are recorded on a continuous basis, and
remain for the most part under drivers’ control. Premium amounts are differentiated to
reflect safety, by charging higher fees for unsafe road categories and night-time driving, for
instance. Moreover, insured drivers can adapt their driving style to make the amount of
UB insurance premium decrease. In that respect, they appear to be superior both from an
actuarial point of view (more accurate risk evaluation) and societal goal (promoting safer
driving habits and decreasing traffic congestion). In this way, UB actuarial pricing also
serves as a mechanism to raise drivers’ awareness and improve their driving behaviour.
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